Fliegende Computer Sascha Uhrig, Airbus Central Research & Technology

Juli 2020

A330-900AIRBUS_

A commercial aircraft manufacturer, with Defence and Space as well as Helicopters Divisions

Airbus is the largest aeronautics and space company in Europe and a worldwide leader.

Hersteller von Verkehrsflugzeugen mit zwei Divisionen

Airbus Defence and Space und Airbus Helicopters

134.931

Mitarbeiter

€ 471 Milliarden Auftragsbestand

€ 70,5 Milliarden Jahresumsatz, angepasst gemäß IFRS 15

Vielseitig und zukunftsweisend: die Airbus-Flugzeugfamilien

Single-aisle Family Widebody Family A350-1000 A321neo A350-1000 A IRELI A3201000 A350-900 350-900 AIRBUS A319neo A330-900 A220-300 A330-800 A220-100 A330-BOOAIDBUS

HELICOPTERS

Civil range

HELICOPTERS

Military range

Technology demonstrators

Airbus is Europe's largest and most innovative defence and space company

We develop and manufacture world-class aerospace products. Our exceptional platforms and services allow our customers to address even their most challenging operational needs.

Strong, innovative and customer focused – Our portfolio

Military Aircraft

Space Systems

- A400M
- A330 Multi-Role Tanker Transport
- Special Mission Aircraft
- Combat Aircraft
- Full In-Service Support

- Telecommunication
 Satellites
- Earth Observation
 Satellites
- Navigation Satellites
- Orbital and Space
 Exploration Infrastructure
- Science Missions
- ArianeGroup (Launchers)

Communications, Intelligence and Security

- Intelligence
- CyberSecurity
- Security Solutions
- Secure Communications
- Secure Land
 Communications
- Future Applications

Unmanned Aerial Systems

 UAS and UAV solutions for airborne intelligence, surveillance and reconnaissance, and combat missions

ACJ – Your world above the world

Airbus Corporate Jet

und entspannt reisen

Inkrementelle Innovation

Neue Produktlinien oder NEO-Versionen

Demonstrator-basierte Forschung, 3,2 Mrd. € eigenfinanzierte F&E im Jahr 2018

Wegbereiter neuer Technologien

Nachhaltigkeit

Autonomie

Elektrifizierung

Konnektivität

Fortschrittliche Werkstoffe

Künstliche Intelligenz Industrielle Systeme

Airbus Research & Technology Landscape

	Technology Planning & Roadmapping	Flight Demonstrators	Airbus R&T	Central R&T				
Electrification						n Center		es
Connectivity								
Autonomy	1 1	1 1			A^3	en Innovatio	BizLabs	rbus Ventur
Digital-Design Manu	facturing					Shenzho		Ai
Materials								
					1			

AIRBUS

CR&T Organisation

CR&T [XR] Data Science **Electrics Expertise** Virtual Product Airbus Blue Sky Materials Communication Technologies Engineering [XRD] [XRX] [XRC] [XRE] [XRV] [XRB] Main Focus Main Focus Main Focus Main Focus Main Focus Main Focus Develop and study high Investigate, develop & Research emerging Enable the future of Foster fundamental & Increase integration, apply AI & big data performance materials & technologies on airborne electric flight by pushing digitalization and speculative research in selected areas that could improve efficiency & related manufacturing & space-borne the limits of technology & openness of engineering maintenance techniques automate decisions communications mastering integration & manufacturing impact future research

Airbus CRT

Communication Technologies

Fly-by-Wire-Steuerung

1000

RP TUBA CHART

10

ŧ.

1. IIIII

• • • • •

General: ATA Chapters

	Group: Air vehicle, engines and equipment			
20	Standard practices, Airframe systems			
21	Environmental control			
22	Auto flight			
23	Communications			
24	Electrical power			
25	Equipment/furnishings			
26	Fire protection			
27	Flight controls			
28	Fuel			
29	Hydraulic power			
30	Ice and rain protection			
31	Indicating/recording systems			
32	Landing gear			
33	Lights			
34	Navigation			
35	Oxygen			
36	Pneumatic			
37	Vacuum			
38	Water/waste			

ATA = Air Transportation Association

Certification...

- ...starts at the very first step of development by contacting certification authority (CA, e.g. EASA, FAA):
 I plan development of a new A/C
- CA:

Ok, how do you plan to make sure it is safe?

• Avionic industry:

I am applying standards A, B, C as part of good engineering practice (= certification plan)

• CA:

Please start doing so, we will have regular reviews...

Certification plan and applied standards are mainly frozen at start of development!

Design Assurance Level (DAL)

- Level of design assurance 😳
- Means to what extend and what kind of "quality management" is used ("QM" is misleading since ordinary QM is on the lower end of DAL)
- DAL is assigned to every *item* before it is developed
- DAL assignment is a very complex process based on
 - A/C functions
 - Function criticality
 - A/C architecture
- DAL defines how an item is developed (and maintained)

Software Development

- Software development in avionics is mainly based on DO-178 (ED 12)
 - Targeting requirements engineering, development process, life cycle, configuration management etc.

SOFTWARE CONSIDERATIONS IN AIRBORNE SYSTEMS AND EQUIPMENT CERTIFICATION

- Use of tools is based on ED 215
 - Rational: software development only valid if tools are of high quality

SOFTWARE TOOL QUALIFICATION CONSIDERATIONS

Software Development

- DO-178 addresses (not complete)
 - System requirements
 - Information flow between stakeholders
 - Safety assessment
 - Architectural aspects
 - System/software life cycles process
 - Software planning and development processes
 - Software quality assurance
 - Certification and liaison process

Software Testing - Examples

- Incorrect interrupt handling.
- Failure to satisfy execution time requirements.
- Incorrect software response to hardware transients or hardware failures, for example, start-up sequencing, transient input loads, and input power transients.
- Data bus and other resource contention problems, for example, memory mapping.
- Inability of built-in test to detect failures.
- Errors in hardware/software interfaces.
- Incorrect behavior of control loops.
- Incorrect control of memory management hardware or other hardware devices under software control.
- Stack overflow.
- Incorrect operation of mechanism(s) used to confirm the correctness and compatibility of field-loadable software.
- Violations of software partitioning.

- Incorrect initialization of variables and constants.
- Parameter passing errors.
- Data corruption, especially global data.
- Inadequate end-to-end numerical resolution.
- Incorrect sequencing of events and operations.
- Failure of an algorithm to satisfy a software requirement.
- Incorrect loop operations.
- Incorrect logic decisions.
- Failure to process correctly legitimate combinations of input conditions.
- Incorrect responses to missing or corrupted input data.
- Incorrect handling of exceptions, such as arithmetic faults or violations of array limits.
- Incorrect computation sequence.
- Inadequate algorithm precision, accuracy, or performance.

Special Challenge on Multicores

- DO-178 describes how to develop software and which steps to go for sufficient quality
- Multicores are seen as completely different (more complex) systems than single-cores.
 - → There is no official statement/*advice* how to deal with multicores
 - → There are no multicore systems available, yet
 - → There are no experiences...
- Multicore systems are not covered by any standard (so far)!
- "inofficial" guideline given in CAST32a position paper
 - → Parallel software explicitly **excluded**

Special Challenge on Aultimes

- Multicore systems are not covered by any standard (so far)!
- *•* "inofficial" guideline given in CAST32a position paper
 → Parallel software explicitly excluded

Some Remarks

- Certification is not a burden
- Standards are useful
 - Not directly provided by Certification Authorities
 - Developed by industrial consortia (incl. Airbus)
 - Guide to useful and acknowledged actions

EMC² Research Project

- Addresses the *famous* multicore interference problem
- Dream:

Take a legacy single-core application and run it on a multicore

- Challenge: Does not work – interferences destroy any timing analysis
- Approach:

Let someone monitor execution progress

Single-Core & Multi-Core

Basic Idea

• WCET approach

• Progress measurement during runtime

Application Fingerprint

- Performance counters in every processor core
- Application fingerprint: the recorded amount of events per second over the execution of the application
- Unique per application

Application Fingerprint

- Performance counters in every processor core
- Application fingerprint: the recorded amount of events per second over the execution of the application
- Unique per application
- Similar but stretched and scaled curve when app is slowed-down

Basic Idea Setup

Basic Idea At Development Time

Basic Idea During Productive Execution

Basic Idea During Productive Execution

Helicopter Terrain Awareness and Warning System (HTAWS)

- Pilot support system
- Design Assurance Level: C
- Single core application
- Scheduled tasks within time space partitions

How?

Reduce Interference from other Cores

Control Measure: Threshold

Control Measure: PWM

41

AIRBUS

COEMS Research Project

- How to observe multicore behavior for longer periods?
- Dream:

An instance checking if there are

- any timing violations or "close to be violations"
- any critical races
- Challenge:

Does not work – only offline analysis possible, trace data from multicores too extensive

• Approach:

Let evaluate behavior directly during execution

Dream, Idea

Demo: Ball Balancing System

Academic contribution...

(not complete!)

- Certification targets the complete system
 - -Including all layers
 - Must be done by system integrator(= Airbus)
- Why not starting from scratch?
 - -Address the root cause
 - -Forget about modern cores
 - -Forget about traditional multicores
 - Invent something new!
 Less complex, more useful (for us)

Many thanks... Discussion!

Sascha Uhrig, Airbus Central Research & Technology

