

Consolidating High-Integrity, & High-Performance Functions on a Manycore Processor

 Benoît Dupont de Dinechin CTO

July 2020

www.kalrayinc.com

Kalray in a Nutshell

Kalray is a fabless company offering a new type of processor targeting the booming market of intelligent systems.		 A Global presence France (Grenoble, Sophia-Antipolis) USA (Los Altos, CA) Japan (Yokohama) China (Partner) South Korea (Partner) 		
10+ year's	3 rd generation	Industrial investors	• Public Company (ALKAL)	
experience in Manycore	of MPPA [®] processor		• 690M EQUITY RAISED	
.€85m	30		• Strong support from	
R&D investment	Patent families		European Governments	

Outline

- 1. MPPA[®]3 Manycore Processor
- 2. Standard Programming Environments
- 3. Model-Based Development Environments

Kalray's MPPA®

MPPA® (Massively Parallel Processor Array) Platform

- Hardware

Manycore CPU architecture

Compute clusters of 16 high-performance CPU cores with local memory DSP-like timing predictability

'Fully timing compositional' cores for accurate static timing analysis Service guarantees of local memory system and network-on-chip FPGA-like I/O capabilities

Software

CPU programming

Standard C/C++/OpenMP/OpenCL, OpenVX Library code generators (MetaLibm, KaNN) Model-based (SCADE Suite®, Simulink®)

Multicore and Manycore Processors

Homogeneous Multicore Processor

APP 1 APP 2 APP 3 APP 4	APP 5 APP 6 APP 7 APP 8	- APP 9 - APP 10 - APP 11	APP 12 APP 13 APP 14	Applicatio Software Layer	
	Host Opera	ting System		Infrastructu Layer	
Core I-Cache d-Cache L2 Cache		Core i-Cache L2 Cache iache m Bus	Core i-Cache L2 Cache	Physical Hardware Layer	
Multicore					

Multiple CPU cores sharing a cache-coherent memory hierarchy

- Scalability by replicating CPU cores
- Standard programming models

Energy efficiency issues

• Global cache coherence scaling

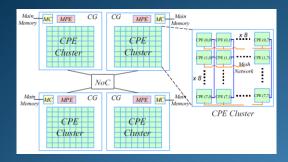
Time-predictability issues

• No scratch-pad or local memories

GPGPU Manycore Processor

Multiple Streaming Multiprocessors

• Restricted programming models


Performance issues of 'thread divergence'

- Branch divergence slow down the execution
- Memory divergence: non-coalesced accesses

Time-predictability issues

- Dynamic allocation of thread blocks
- Dynamic scheduling of warps

CPU-Based Manycore Processor

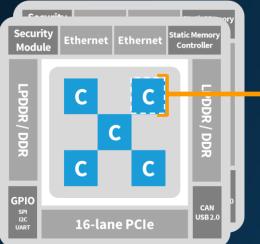
Multiple "Compute Units" connected by a network-on-chip (NoC)

- Scalability by replicating Compute Units
- Standard multicore programming inside a Compute Unit

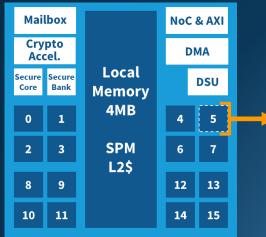
Compute Unit

- Group of cores + DMA
- Scratch-pad memory (SPM)
- Local cache coherency

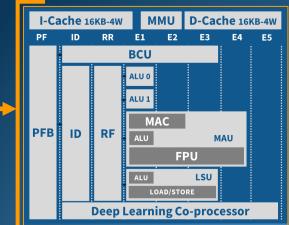
MPPA[®] Processor Family and Roadmap


SAMPLES AVAILABILITY		2019	2020 (IP3) / 2021 (IC)	
	BOSTAN2	COOLIDGE1-80	COOLIDGE2 – 80 COOLIDGE2 – 160	
PROCESS	28 nm	16 nm	16 nm	
FIXED POINT OPERATIONS	1.3 TOPS	25 TOPS (8bit)	50 / 100 TOPS (8bit)*	
FLOATING POINT OPERATIONS	512 GFLOPS	4 TFLOPS (16.32bit)	16 / 32 TFLOPS (16.32bit)*	
DMIPs	250 KDMIPS	190 KDMIPS	190 / 380 KDMIPS	
CONSUMPTION (Typ.)	8 – 25W	5 – 25W	5 – 30W / 5 – 60W	
FEATURES	 288 Kalray VLIW Cores 128 Crypto Copro 2xDDR3 8x 1/10G GbE 2xPCle 8 lane Gen3 	 80 Kalray 64-bit cores 80 Coprocessor for vision and learning 2 x LP/DDR4 8x 1/10/25GbE 16-lane PCle Gen4 	 80/160 Kalray 64-bit cores 80/160 Coprocessor for vision and learning 2 x LP/DDR4 8x 1/10/25GbE 16-lane PCle Gen4 	
QUALIF/CERTIF	Industrial (-20/+85C)	•AEC-Q100 / QM	• ASIL B / ISO 26262	
ARGET MARKET	• DATA CENTER • AUTO (proto)	• DATA CENTER • AUTOMOTIVE	• DATA CENTER • AUTOMOTIVE	
		AVAILABLE (IC and IP)	UNDER DEVELOPMENT (IC and IP)	

Page 6 ©2020 Kalray SA. All rights reserved. Confidential information


.

Kalray MPPA[®] Manycore Processor


COOLIDGE PROCESSOR

5 compute clusters at 1200 MHz 2x 100Gbps Ethernet, 16x PCIe Gen4

COMPUTE CLUSTER

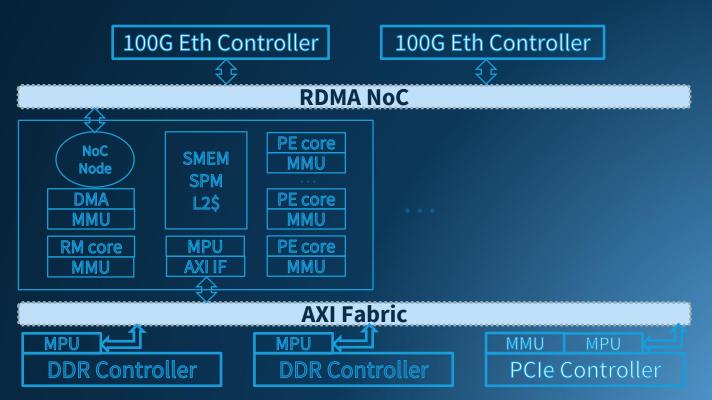
16+1 cores, 4 MB local memory NoC and AXI global interconnects

6-ISSUE VLIW CORE

64x 64-bit register file 128MAC/c tensor coprocessor

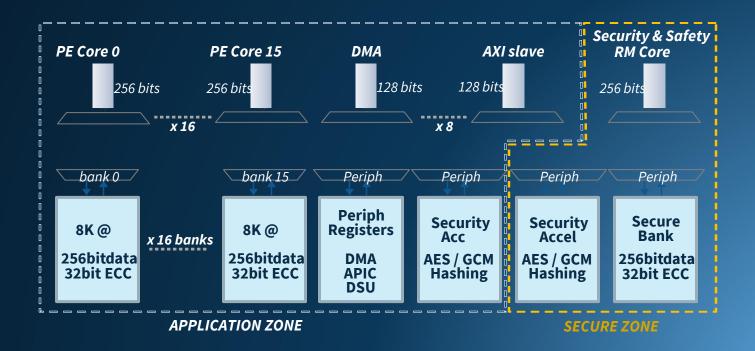
Network-on-Chip for Global Interconnects

NoC as generalization of busses


- Connectionless
- Address-based transactions
- Flit-level flow control
- Implicit routing
- Inside a coherence domain
- Reliable communication
- Coherency protocol messages
- Coordinate with DDR memory controller frontend (Ex. Arteris FlexMem Memory Scheduler)

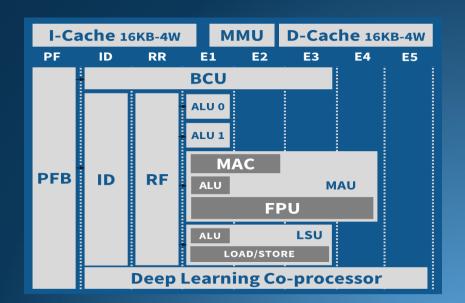
NoC as integrated macro-network

- Connection-oriented
- Stream-based transactions
- [End-to-end flow control]
- Explicit routing
- Across address spaces (RDMA)
- [Packet loss or packet reordering]
- Traffic shaping for QoS (application of DNC)
- Terminate macro-network (Ethernet, InfiniBand)
- Support of multicasting



MPPA[®]3 Global Interconnects

MPPA[®]3 Cluster Interconnect


MPPA®3 64-Bit VLIW Core

Vector-scalar ISA

- 64x 64-bit general-purpose registers
- Operands can be single registers, register pairs (128bit) or register quadruples (256-bit)
- Immediate operands up to 64-bit, including F.P.
- 128-bit SIMD instructions by dual-issuing 64-bit on the two ALUS or by using the FPU datapath

FPU capabilities

- 64-bit x 64-bit + 128-bit \rightarrow 128-bit
- 128-bit op 128-bit → 128-bit
- FP16x4 SIMD 16 x 16 + 32 → 32
- FP32x2 FMA, FP32x4 FADD, FP32 FMUL Complex
- FP32 Matrix Multiply 2x2 Accumulate

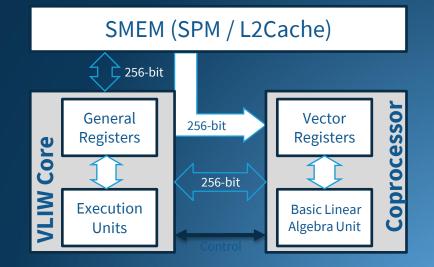
VLIW CORE PIPELINE

MPPA®3 Tensor CoProcessor

Extend VLIW core ISA with extra issue lanes

- Separate 48x 256-bit wide vector register file
- Matrix-oriented arithmetic operations (CNN, CV ...)

Full integration into core instruction pipeline

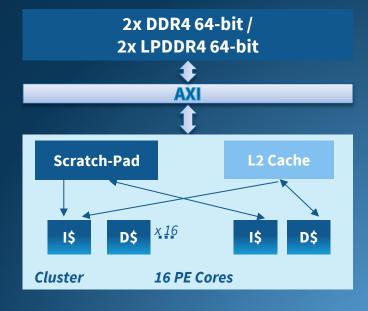

- Move instructions supporting matrix-transpose
- Proper dependency / cancel management

Leverage MPPA memory hierarchy

- SMEM directly accessible from coprocessor
- Memory load stream aligment operations

Arithmetic performances (MPPA3-v1)

- 128x INT8→INT32 MAC/cycle
- 64x INT16→INT64 MAC/cycle
- 16x FP16→FP32 FMA/cycle


MPPA[®]3 Memory Hierarchy

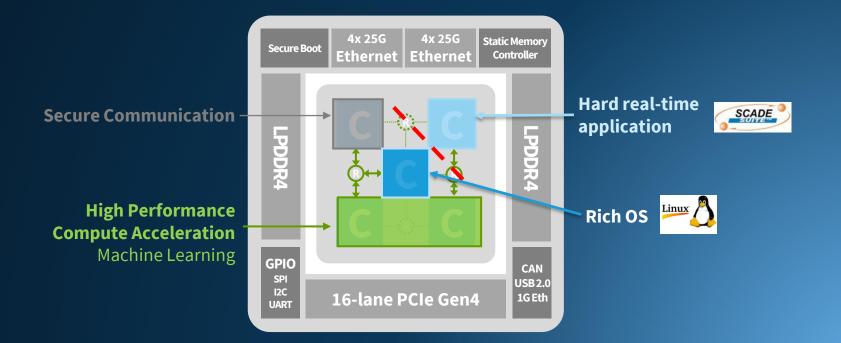
VLIW Core L1 Caches

- 16KB / 4-way LRU instruction cache per core
- 16KB / 4-way LRU data cache per core
- 64B cache line size
- Write-through, write no-allocate (write around)
- Coherency configurable across all L1 data caches

Cluster L2 Cache & Scratch-Pad Memory

- Scratch-pad from 2MB to 4MB
 - 16 independent banks, full crossbar
 - Interleaved or banked address mapping
- L2 cache from 0MB to 2MB
 - 16-way Set Associative
 - 256B cache line size
 - Write-back, write allocate

L1 cache	L2 cache	
coherency	coherency	
enable	enable	
/disable	/disable	


Outline

- 1. MPPA[®]3 Manycore Processor
- 2. Standard Programming Environments
- 3. Model-Based Development Environments

Mapping Functions to Compute Units

Run Multiple application and Multiple OS Concurrently

C Cluster

KALRAY

MPPA[®] Embedded Platform

Hard Real-Time (high-integrity)

Model-based with time SCADE (+ Asterios) (Simulink + LET)

SCADE → Esterel Tech. Asterios → Krono-Safe FreeRTOS → Kalray

Soft Real-Time **Best Effort** (time-predictable) (high-performance) 6..... OpenMP POSIX PSE52 with **«**..... OpenCL usage domain BLAS, FFT, CV restrictions **&**..... **Deep Learning** ClusterOS \rightarrow Kalray **Embedded Linux** $OSEK/VDX \rightarrow eSOL$

High-Performance Programming Models

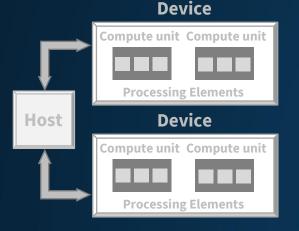
OPENCL 1.2 Programming

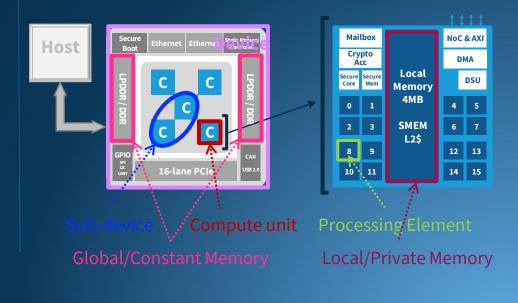
C/C++ POSIX Threads Programming

Standard accelerator programming model for offloading on MPPA[®]

- POSIX host CPU accelerated by MPPA device (OpenAMP interface)
- OpenCL 1.2 compatibility with POCL environment and LLVM for OpenCL-C
- OpenCL offloading modes:
 - Linearized Work Items on a PE (LWI)
 - Single Program Multiple Data (SPMD)
 - Native code called from kernels

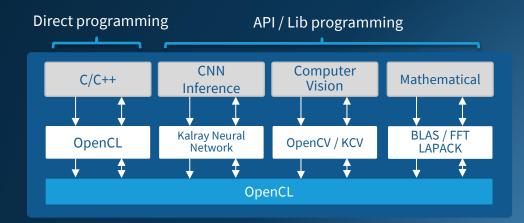
Standard multicore programming model with exposed MPPA[®] communications


- MPPA Linux and ClusterOS
- Standard C/C++ programming
 - GCC, GDB, Eclipse system trace
- POSIX threads interface
- GCC OpenMP support
- RDMA using the MPPA Asynchronous Communication library (mppa_async)


OpenCL Compute Platform Mapping for MPPA

OpenCL Compute Platform Model

Topology: Host CPU connected to one or several Device(s) **Host**: CPU which runs the application under a rich OS (Linux) **Device**: Compute Unit(s) sharing a Global Memory **Hierarchy**: Multi-Device => Device => Sub-Device => Compute Unit(s) => Processing Elements


'SPMD' Mapping to MPPA[®] Architecture

Kalray Acceleration Framework (KAF[™])

A versatile way to program manycore architecture based on OpenCL

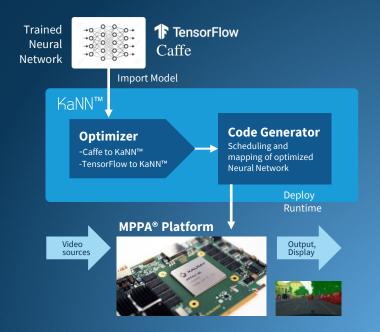
OpenCL Native Function Extension

- Enable to call ASM, C/C++/OpenMP/POSIX void (ClusterOS) code from OpenCL kernels
- Generalization of TI 'OpenMP Dispatch With OpenCL' for KeyStone-II platforms
- Used by Kalray KaNN deep learning compiler
- Used by BLAS and multi-cluster libraries

```
void
my_vector_add(int *a, int *b, int *c, int n)
{
    #pragma omp parallel for
    for (int i = 0; i < n; ++i)
    {
        c[i] = a[i] + b[i];
    }
</pre>
```

```
__attribute__((mppa_native))
void my_vector_add(__global int *a, __global int *b, __global int *c, int n);
__kernel void vector_add(__global int *a, __global int *b, __global int *c, int n) {
    my_vector_add(a, b, c, n);
}
```

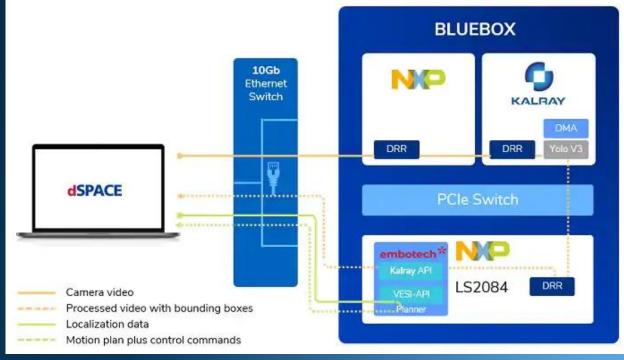

KaNN[™], Kalray Neural Network, Inference Compiler


From standard Machine Learning frameworks to code generation, setup and multiple CNN execution

Deep Learning Inference Code Generator

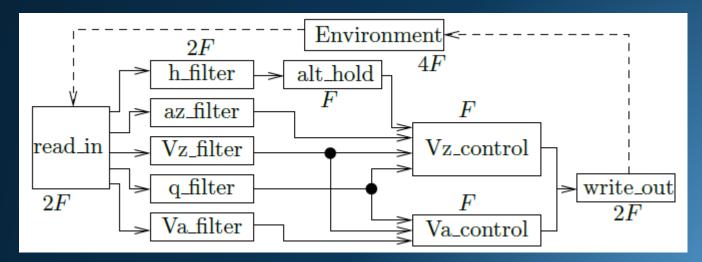
- Optimization of neural networks for MPPA[®]
- Deployment of neural networks on MPPA[®]

Deep Learning Inference Runtime Support of:

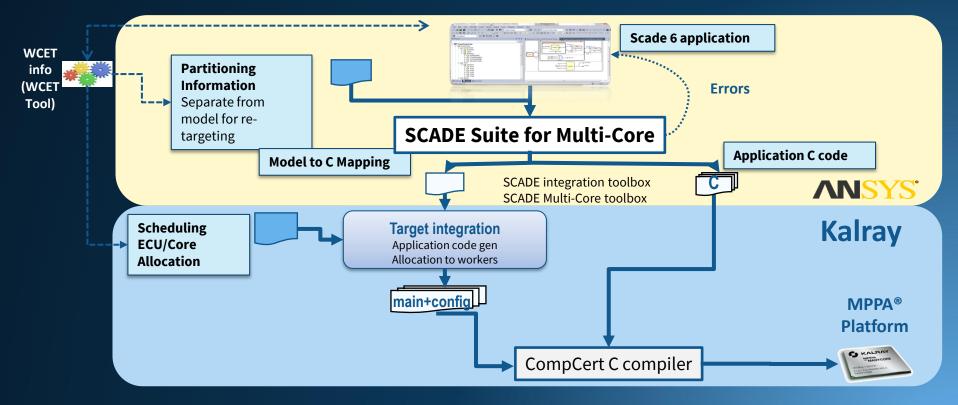

- Major frameworks
- Major networks
- Custom networks

CES 2020 NXP Demonstration

- NXP BlueBox 2nd generation Autonomous Driving Development platform with production ready automotive silicon
- Kalray Coolidge 3rd Generation MPPA Perception Accelerator and AI Software (Yolo v3 416x416)
- Embotech Forces Pro and ProCruiser Real-time optimal control software and Highway planner solution
- dSPACE ASM Traffic Real time simulation environment with traffic, sensor simulation, full VD and BEV powertrain.


Outline

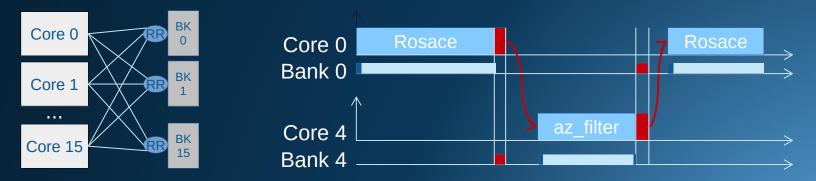
- 1. MPPA[®]3 Manycore Processor
- 2. Standard Programming Environments
- 3. Model-Based Development Environments


ROSACE Case Study for MBD on Multicore

• Simplified controller for the longitudinal motion of a medium-range civil aircraft in en-route phase: cruise and change of cruise level sub-phases

• Application has 3 harmonic periods: F, 2F, 4F

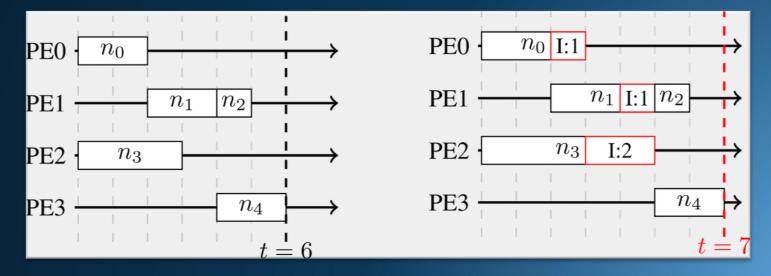
SCADE Suite Multi-Core Code Generation Flow



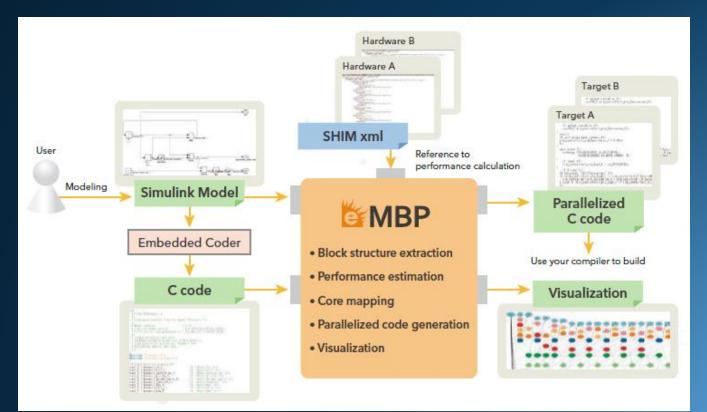
SCADE Suite MCG Code Generation

• Exploit the MPPA cluster configuration for 'high-integrity' execution

• Enable the cluster local memory mapping of one bank per core



- Precisely compute the task WCETs (Worst-Case Execution Times)
 - Static analysis or measurement for the WCET of tasks in isolation
 - Refine the WCET with interferences [Rihani RTNS'16][Schuh DATE'20]


Time-Triggered Multicore Scheduling [Schuh DATE'20]

- Given a task mapping and release dates, schedule by forward time sweep
- Release a task when its dependencies are satisfied and after its release date
- Adjust interferences considering to the subset of curently executing tasks

eSOL eMBP Multi-Core Code Generation Flow

COOLIDGE™

3rd Generation of MPPA[®] Processor

HOE 004-1E 051

The Compute Solution for Next **Generation Vehicles**

AI Acceleration and much more!

Computing power

Data processing in real time

Accelerate Multiple Applications in parallel

Power efficiency

</>
</>
</>
</>
Programmable/Open systems

Security & Safety (ASIL-B)

Thank You

KALRAY S.A

Corporate Headquarters 180, avenue de l'Europe 38 330 Montbonnot, France Phone: +33 (0)4 76 18 90 71 <u>contact@kalrayinc.com</u>

America Regional Headquarters 4962 El Camino Real Los Altos, CA - USA Phone: +1 (650) 469 3729 contact@kalrayinc.com

ALRAY JAPAN - KK

Represented by MACNICA Inc. Strategic Innovation Group Macnica Building, No.1, 1-6-3 Shin-Yokohama Kouhoku-ku, Yokohama 222-8561, Japan Phone: +81-45-470-9870

KALRAY S.A

Sophia-Antipolis 1047 allée Pierre Ziller Business Pôle – Bâtiment B, Entrée A 06560 Sophia-Antipolis, France Phone: + 33(0) 4 76 18 09 18

www.kalrayinc.com