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Motivation
CPU Year Transistors Clock Structure Caches

4004 1971 2,300 740 kHZ 20 Micro

8008 1972 3,500 500 kHz 10 Micro

8086 1978 29,000 10 MHz 3 Micro

80286 1982 134,000 25 MHz 1.5 Micro

80386 1985 275,000 33 MHz 1 Micro

80486 1989 1,2M 50 MHz 0.8 Micro 8K

Pentium I 1994 3.1M 66 MHz 0.8 Micro 8K

Pentium II 1997 7.5M 300 MHz 0.35 Micro 16K/512K

Pentium III 1999 9.5M 600 MHz 0.25 Micro 16K/512K

Pentium IV 2000 42M 1.5 GHz 0.18 Micro 8K/256K

P IV F 2005 ~160M 2.8 GHz 90 nm 16K/2MB

Core I7 2008 781M 3.2 GHz 45 nm 32/256/8

Ivy Bridge 2013 2,890M 3.3 GHz 22 nm 32/256/30

1970-2000:
2x Speedup every two 
years on the same code

2000+:
What’s happening now?

Moore’s Law:
“The number of transistors 
doubles every two years”
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Problem:

Power = clock³

-> Top 500 consume 3 Billion 
kWh per year
-> Use of AI & digital twins 
leads to increasing resource 
needs

Motivation
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Solution:

Const: frequency
Grow: cores (and caches)

Motivation

4Adapt your code to the hardware!
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Solution:

Const: frequency
Grow: cores (and caches)
Specialization: accelerated 
computing

Performance is a primary design goal. Rewriting code is expensive!
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Application
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Application
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Optimized
HPC 

Application
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Application
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Loop Nests
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Motivation

Can we talk to the compiler
(to generate those insights automatically)

?
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DOCC: A compiler that learns with every program
(based on LLVM plugins, cf. transfer tuning)

Compiler connects to a 
database of optimizations 

for processor XYZ

Code Binary

Motivation
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daisytuner.com

Continuous Benchmarking
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DOCC: A compiler that learns with every program
(based on LLVM plugins, cf. transfer tuning)

Compiler connects to a 
database of optimizations 

for processor XYZ

Code Binary

DOCC
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Auto-Tuning
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Auto-Tuning
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Challenge:

● Sensible optimization schema
● “Good” optimization function
● Ensurance of correctness
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Initial state
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Auto-Tuning

Initial state

Target state
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Transfer Tuning
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Transfer Tuning
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Transfer Tuning
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Query by similarity

Transfer Tuning

29



30

Loop Nest

¹ Ben-Nun et. al. - Stateful Dataflow Multigraphs: A Data-Centric Model for 
Performance Portability on Heterogeneous Architectures

Vector Key
(embedding)

Encodes:
• Loop Structure
• Memory 

Accesses
• Memory 

bandwidth
• Cache misses

Embeddings



SDFG¹
 

DaCe

Loop Nest
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¹ Ben-Nun et. al. - Stateful Dataflow Multigraphs: A Data-Centric Model for 
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DaCeSDFGLib

Embeddings
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input-dependency?

Loop Nest



SDFG¹
 

DaCe

Vector Key
(embedding)

Encodes:
• Loop Structure
• Memory 

Accesses
• Memory 

bandwidth
• Cache misses

C

BA

loops 
[i,j,k]

Performance 
CountersProfiling

Static Features

¹ Ben-Nun et. al. - Stateful Dataflow Multigraphs: A Data-Centric Model for 
Performance Portability on Heterogeneous Architectures

Dynamic Features

DaCeSDFGLib

Embeddings
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Input
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Embeddings
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● Generate new code
● Introduce source-level 

instrumentation (PAPI)
● Measure representative 

performance counter
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SDFG¹
 

DaCe

Loop 
Nest Vector Key

(embedding)

Encodes:
• Loop Structure
• Memory 

Accesses
• Memory 

bandwidth
• Cache misses

C

BA

loops 
[i,j,k]

Performance 
CountersProfiling

Graph Neural 
Network

Multilayer 
Perceptron

Static Features

¹ Ben-Nun et. al. - Stateful Dataflow Multigraphs: A Data-Centric Model for 
Performance Portability on Heterogeneous Architectures

Dynamic Features

DaCeSDFGLib

Embeddings
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SDFG¹
 

DaCe

Loop 
Nest Vector Key

(embedding)

Encodes:
• Loop Structure
• Memory 

Accesses
• Memory 

bandwidth
• Cache misses

C

BA

loops 
[i,j,k]

Performance 
CountersProfiling

Graph Neural 
Network

Multilayer 
Perceptron

Static Features

¹ Ben-Nun et. al. - Stateful Dataflow Multigraphs: A Data-Centric Model for 
Performance Portability on Heterogeneous Architectures

Dynamic Features

DaCeSDFGLib

Embeddings 
correlate with 
performance 
metrics!

Embeddings
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Transfer Tuning



DOCC
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Challenge:

● Number of optimizable regions in practice high
● Particularly in engineering, differing program flow depending on input
● Where is the biggest optimization potential?

Performance Model
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Challenge:

● Number of optimizable regions in practice high
● Particularly in engineering, differing program flow depending on input
● Where is the biggest optimization potential?

● Find bottlenecks
● Approximate optimization potential

Performance Model
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Performance Model
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Thanks! Questions?

daisytuner.com



What is Loop Scheduling
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HPC
Application

Focus on Loop 
Nests
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HPC
Application

Focus on Loop 
Nests

Lifting

Representation, e.g.,
polyhedral model
stateful dataflow 

multigraphs



What is Loop Scheduling
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Optimize 
Performanc

e

HPC
Applicatio

n
Focus on Loop 

Nests

Liftin
g

Optimization Space
(Tiling, Interchange, 
…)

Representation, e.g.,
polyhedral model
stateful dataflow 

multigraphs



Normalization Criteria - Intuition
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Matmul B (k swap)Matmul A (naive) Matmul C (with init)



A Priori Loop Nest Normalization - Idea
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Designated Initial 
State

Algorithmic 
Variation

Language-specific Variation

Pre-Optimized 
Code
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Matching Program Transformations

Optimization

Query Loop Nest

SDF
G

Static 
Features

A

Loop 
i

B

Node 
Embeddings

Graph Neural 
Network

SDF
G

A

Loop 
i

B

Loop 
j

Graph
Neural Network

Static 
Features

Hungarian Method 
(Kuhn–Munkres algorithm)
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Performance Embeddings - Evaluation

Model Main Memory 
Bandwidth

Data Locality

Reuse Distance 0.78 0.87

IR2Vec¹ 0.47 0.41

Tiramisu² 0.32 0.35

Our Model 0.25 0.31

Mean variation of neighbors for different performance metrics. A lower 
value is better.

² Baghdadi et al. - A Deep Learning Based Cost Model for Automatic Code 
Optimization

¹ VenkataKeerthy et al. - IR2Vec: LLVM IR based Scalable Program 
Embeddings
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Evaluation
Benchmark Explored States Reference [ms] Transfer Tuning

(k=5)
Transfer Tuning 

(k=10)

mlp 111,508 1.47 + 38.8% + 37.4%

softmax 183,427 110.40 + 0.6% + 0.5%

blur filter 1,342 1.03 0.0 0.0

daubechies wavelet 9,101 8.73 - 3.7% - 92.0%

haar wavelet 8,639 0.22 0.0% 0.0%

harris filter 1,651 9.06 + 0.2% - 4.0%

histogram filter 147,438 32.51 + 1.2% - 4.9%

unsharpening filter 25,080 29.66 + 3.1% + 0.5%

heat 3D 69,080 13428.98 + 3.6% + 2.8%

horizontal diffusion 34,534 7.00 + 4.8% + 2.8%

matmul 65,986 14.17 + 5.3% + 4.1%

min-plus mm 65,999 24.76 + 9.0% + 8.5%

Number of explored states and optimized runtime of the Auto-Scheduler compared to Transfer 
Tuning a constant number of hypotheses.



Transfer Tuning: CLOUDSC


