
A Self-learning Compiler for
Tensor Processing on the Edge

Nora Hagmeyer, Ramon Wirsch, Adrian Schmitz, Lukas Trümper

Table of Contents

Motivation

Moore’s Law - Novel Hardware Architectures

Performance Engineering

DOCC - A self-learning Compiler

Daisytuner Optimizing Compiler Collection

Tuning

Auto-Tuning

Transfer Tuning

Outlook

Motivation
CPU Year Transistors Clock Structure Caches

4004 1971 2,300 740 kHZ 20 Micro

8008 1972 3,500 500 kHz 10 Micro

8086 1978 29,000 10 MHz 3 Micro

80286 1982 134,000 25 MHz 1.5 Micro

80386 1985 275,000 33 MHz 1 Micro

80486 1989 1,2M 50 MHz 0.8 Micro 8K

Pentium I 1994 3.1M 66 MHz 0.8 Micro 8K

Pentium II 1997 7.5M 300 MHz 0.35 Micro 16K/512K

Pentium III 1999 9.5M 600 MHz 0.25 Micro 16K/512K

Pentium IV 2000 42M 1.5 GHz 0.18 Micro 8K/256K

P IV F 2005 ~160M 2.8 GHz 90 nm 16K/2MB

Core I7 2008 781M 3.2 GHz 45 nm 32/256/8

Ivy Bridge 2013 2,890M 3.3 GHz 22 nm 32/256/30

1970-2000:
2x Speedup every two
years on the same code

2000+:
What’s happening now?

Moore’s Law:
“The number of transistors
doubles every two years”

3

Problem:

Power = clock³

-> Top 500 consume 3 Billion
kWh per year
-> Use of AI & digital twins
leads to increasing resource
needs

Motivation

4

Solution:

Const: frequency
Grow: cores (and caches)

Motivation

4Adapt your code to the hardware!

Motivation

6

Solution:

Const: frequency
Grow: cores (and caches)
Specialization: accelerated
computing

Adapt your code to the hardware!

Motivation

6

Solution:

Const: frequency
Grow: cores (and caches)
Specialization: accelerated
computing

Performance is a primary design goal. Rewriting code is expensive!

Motivation

HPC
Application

Optimized
HPC

Application

8

Optimized
HPC

Application

9

HPC
Application

Motivation

Loop Nests

10

Motivation

11

Motivation

12

Motivation

Motivation

13

Motivation

Can we talk to the compiler
(to generate those insights automatically)

?
14

DOCC: A compiler that learns with every program
(based on LLVM plugins, cf. transfer tuning)

Compiler connects to a
database of optimizations

for processor XYZ

Code Binary

Motivation

15

Team

Scientific Advisors

Lukas Trümper
Co-Founder

Former: RWTH Aachen, ETH Zurich
Computer Science

Adrian Schmitz
Co-Founder
RWTH Aachen

Computer Science

Ramon Wirsch
Former: TU Darmstadt

Elektro- und Informationstechnik

Torsten Hoefler
Professor @ ETH Zurich
ACM Fellow, IEEE Fellow

Tal Ben-Nun
Researcher @ Lawrence Livermore

Forbes Israel’s 30u30

Christian Terboven
Researcher @ RWTH Aachen

OpenMP committee

Nora Hagmeyer
Former: TU Munich, Bundeswehr

University Munich, INRIA
Computational Mechanics

16

daisytuner.com

Continuous Benchmarking

17

DOCC: A compiler that learns with every program
(based on LLVM plugins, cf. transfer tuning)

Compiler connects to a
database of optimizations

for processor XYZ

Code Binary

DOCC

18

Table of Contents

Motivation

Moore’s Law - Novel Hardware Architectures

Performance Engineering

DOCC - A self-learning Compiler

Daisytuner Optimizing Compiler Collection

Tuning

Auto-Tuning

Transfer Tuning

Outlook

Tuning

20

Auto-Tuning

Auto-Tuning

21

Auto-Tuning

22

Challenge:

● Sensible optimization schema
● “Good” optimization function
● Ensurance of correctness

Auto-Tuning

Initial state

23

Challenge:

● Sensible optimization schema
● “Good” optimization function
● Ensurance of correctness

Auto-Tuning

Initial state

Target state

24

Challenge:

● Sensible optimization schema
● “Good” optimization function
● Ensurance of correctness

Auto-Tuning

25

Transfer Tuning

26

Transfer Tuning

27

Transfer Tuning

28

Query by similarity

Transfer Tuning

29

30

Loop Nest

¹ Ben-Nun et. al. - Stateful Dataflow Multigraphs: A Data-Centric Model for
Performance Portability on Heterogeneous Architectures

Vector Key
(embedding)

Encodes:
• Loop Structure
• Memory

Accesses
• Memory

bandwidth
• Cache misses

Embeddings

SDFG¹

DaCe

Loop Nest
Vector Key

(embedding)

Encodes:
• Loop Structure
• Memory

Accesses
• Memory

bandwidth
• Cache misses

C

BA

loops
[i,j,k]

¹ Ben-Nun et. al. - Stateful Dataflow Multigraphs: A Data-Centric Model for
Performance Portability on Heterogeneous Architectures

DaCeSDFGLib

Embeddings

31

SDFG¹

DaCe

Vector Key
(embedding)

Encodes:
• Loop Structure
• Memory

Accesses
• Memory

bandwidth
• Cache misses

C

BA

loops
[i,j,k]

Static Features

¹ Ben-Nun et. al. - Stateful Dataflow Multigraphs: A Data-Centric Model for
Performance Portability on Heterogeneous Architectures

DaCeSDFGLib

Embeddings

32

Loop Nest

SDFG¹

DaCe

Vector Key
(embedding)

Encodes:
• Loop Structure
• Memory

Accesses
• Memory

bandwidth
• Cache misses

C

BA

loops
[i,j,k]

Static Features

¹ Ben-Nun et. al. - Stateful Dataflow Multigraphs: A Data-Centric Model for
Performance Portability on Heterogeneous Architectures

DaCeSDFGLib

Embeddings

33

input-dependency?

Loop Nest

SDFG¹

DaCe

Vector Key
(embedding)

Encodes:
• Loop Structure
• Memory

Accesses
• Memory

bandwidth
• Cache misses

C

BA

loops
[i,j,k]

Performance
CountersProfiling

Static Features

¹ Ben-Nun et. al. - Stateful Dataflow Multigraphs: A Data-Centric Model for
Performance Portability on Heterogeneous Architectures

Dynamic Features

DaCeSDFGLib

Embeddings

34

Representative
Input

Loop Nest

Embeddings

35

● Generate new code
● Introduce source-level

instrumentation (PAPI)
● Measure representative

performance counter

SDFG¹

DaCe

Vector Key
(embedding)

Encodes:
• Loop Structure
• Memory

Accesses
• Memory

bandwidth
• Cache misses

C

BA

loops
[i,j,k]

Performance
CountersProfiling

Static Features

¹ Ben-Nun et. al. - Stateful Dataflow Multigraphs: A Data-Centric Model for
Performance Portability on Heterogeneous Architectures

Dynamic Features

DaCeSDFGLib

Embeddings

36

Representative
Input

Loop Nest

SDFG¹

DaCe

Loop
Nest Vector Key

(embedding)

Encodes:
• Loop Structure
• Memory

Accesses
• Memory

bandwidth
• Cache misses

C

BA

loops
[i,j,k]

Performance
CountersProfiling

Graph Neural
Network

Multilayer
Perceptron

Static Features

¹ Ben-Nun et. al. - Stateful Dataflow Multigraphs: A Data-Centric Model for
Performance Portability on Heterogeneous Architectures

Dynamic Features

DaCeSDFGLib

Embeddings

37

SDFG¹

DaCe

Loop
Nest Vector Key

(embedding)

Encodes:
• Loop Structure
• Memory

Accesses
• Memory

bandwidth
• Cache misses

C

BA

loops
[i,j,k]

Performance
CountersProfiling

Graph Neural
Network

Multilayer
Perceptron

Static Features

¹ Ben-Nun et. al. - Stateful Dataflow Multigraphs: A Data-Centric Model for
Performance Portability on Heterogeneous Architectures

Dynamic Features

DaCeSDFGLib

Embeddings
correlate with
performance
metrics!

Embeddings

38

Transfer Tuning

DOCC

40

Challenge:

● Number of optimizable regions in practice high
● Particularly in engineering, differing program flow depending on input
● Where is the biggest optimization potential?

Performance Model

41

Challenge:

● Number of optimizable regions in practice high
● Particularly in engineering, differing program flow depending on input
● Where is the biggest optimization potential?

Challenge:

● Number of optimizable regions in practice high
● Particularly in engineering, differing program flow depending on input
● Where is the biggest optimization potential?

● Find bottlenecks
● Approximate optimization potential

Performance Model

42

Performance Model

43

Thanks! Questions?

daisytuner.com

What is Loop Scheduling

45

HPC
Application

Focus on Loop
Nests

What is Loop Scheduling

46

HPC
Application

Focus on Loop
Nests

Lifting

Representation, e.g.,
polyhedral model
stateful dataflow

multigraphs

What is Loop Scheduling

47

Optimize
Performanc

e

HPC
Applicatio

n
Focus on Loop

Nests

Liftin
g

Optimization Space
(Tiling, Interchange,
…)

Representation, e.g.,
polyhedral model
stateful dataflow

multigraphs

Normalization Criteria - Intuition

48

Matmul B (k swap)Matmul A (naive) Matmul C (with init)

A Priori Loop Nest Normalization - Idea

49

Designated Initial
State

Algorithmic
Variation

Language-specific Variation

Pre-Optimized
Code

50

Matching Program Transformations

Optimization

Query Loop Nest

SDF
G

Static
Features

A

Loop
i

B

Node
Embeddings

Graph Neural
Network

SDF
G

A

Loop
i

B

Loop
j

Graph
Neural Network

Static
Features

Hungarian Method
(Kuhn–Munkres algorithm)

51

Performance Embeddings - Evaluation

Model Main Memory
Bandwidth

Data Locality

Reuse Distance 0.78 0.87

IR2Vec¹ 0.47 0.41

Tiramisu² 0.32 0.35

Our Model 0.25 0.31

Mean variation of neighbors for different performance metrics. A lower
value is better.

² Baghdadi et al. - A Deep Learning Based Cost Model for Automatic Code
Optimization

¹ VenkataKeerthy et al. - IR2Vec: LLVM IR based Scalable Program
Embeddings

52

Evaluation
Benchmark Explored States Reference [ms] Transfer Tuning

(k=5)
Transfer Tuning

(k=10)

mlp 111,508 1.47 + 38.8% + 37.4%

softmax 183,427 110.40 + 0.6% + 0.5%

blur filter 1,342 1.03 0.0 0.0

daubechies wavelet 9,101 8.73 - 3.7% - 92.0%

haar wavelet 8,639 0.22 0.0% 0.0%

harris filter 1,651 9.06 + 0.2% - 4.0%

histogram filter 147,438 32.51 + 1.2% - 4.9%

unsharpening filter 25,080 29.66 + 3.1% + 0.5%

heat 3D 69,080 13428.98 + 3.6% + 2.8%

horizontal diffusion 34,534 7.00 + 4.8% + 2.8%

matmul 65,986 14.17 + 5.3% + 4.1%

min-plus mm 65,999 24.76 + 9.0% + 8.5%

Number of explored states and optimized runtime of the Auto-Scheduler compared to Transfer
Tuning a constant number of hypotheses.

Transfer Tuning: CLOUDSC

