
Ensuring non-functional safety properties

on embedded multicore systems

Simon Wegener, AbsInt Angewandte Informatik GmbH

Outline

▪ Introduction
Why are we interested in non-functional properties?

▪ Timing
Why are multicores hard to analyze?

▪ Memory
How can we ensure safety properties by construction?

▪ Conclusion

AbsInt Angewandte Informatik GmbH
▪ Provides advanced development tools for embedded systems, and tools

for validation, verification, and certification of safety-critical software.

▪ Founded in February 1998 by six researchers of Saarland University,
Germany, from the group of programming languages and compiler
construction of Prof. Dr. Dr. h.c. mult. R. Wilhelm.

▪ Privately held by the founders.

▪ 45 + employees.

▪ Selected customers:

Key Products
Astrée

▪ Detects all runtime errors, data races, deadlocks, and other
critical errors

RuleChecker

▪ Checks coding guidelines (MISRA, CERT, ...)

CompCert

▪ Formally verified optimizing C compiler

StackAnalyzer

▪ Safe upper bounds on maximal stack: no more stack overflows

Timing Analysis Solutions
▪ aiT WCET Analyzer: Safe upper bounds on worst-case execution time:

timing guarantees

▪ TimeWeaver: Hybrid worst-case timing analysis for High-End CPUs:
combines tracing with static analysis

▪ TimingProfiler: Timing estimates: continuous timing feedback
and optimization during early SW-development

Excerpt from:

ISO 26262-6 Road vehicles - Functional safety –

Part 6: Product development: Software Level, 2011.

Development Process

TimingProfiler

aiT / TimeWeaver Astrée / RuleChecker

StackAnalyzer

Functional Safety

▪ Demonstration of functional correctness
▪ Well-defined criteria

➢ Automated and/or model-based testing

➢ Formal techniques: model checking, theorem proving

▪ Satisfaction of safety-relevant non-functional requirements
▪ No runtime errors (e.g. division by zero, overflow,

invalid pointer access, out-of-bounds array access)

▪ Resource usage:

▪ Timing requirements (e.g. WCET, WCRT)

▪ Memory requirements (e.g. no stack overflow)

▪ Robustness / freedom of interference (e.g. no corruption of content, incorrect
synchronization, illegal read/write accesses)

➢ Insufficient: Tests & Measurements

▪ No specific test cases, unclear test end criteria, no full coverage possible

▪ "Testing, in general, cannot show the absence of errors." [DO-178B]

▪ Formal technique: abstract interpretation.

Required by

DO-178B / DO-178C /

ISO-26262, EN-50128,

IEC-61508

Required by

DO-178B / DO-178C /

ISO-26262, EN-50128,

IEC-61508

Trends in Automotive

▪ Code size explosion

▪ LOC per car 2010: up to 10 million

▪ LOC per car 2016: up to 150 million (factor 15)

▪ Software becomes key value proposition

▪ Cars in transition from hardware driven
machines to
software-driven electronic devices

▪ Snowballing complexity is causing significant
software-related quality issues.

▪ Quality and security of vehicle software and electronics are
key requirements to guarantee safety.

Excerpts from:

Ondrej Burkacky, Johannes Deichmann, Georg Doll, Christian Knochenhauer. Rethinking car software

and electronics architecture. Report McKinsey & Company, Feb. 2018.

PART I – Timing Analysis

Safety-Critical Hard Real-Time Software

▪ Controllers in planes, cars, plants, … are expected to
finish their tasks within reliable time bounds.

▪ Timing analysis must be performed.

Automotive: ISO-26262

Excerpt from:

ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: software level, 2011

Criticality levels:

A(lowest)

to

D (highest)

Execution Time Variablility (Singlecore)

LOAD r2, _a

LOAD r1, _b

ADD r3,r2,r1

1990: 68020 2001: MPC755

Up to a factor of 100 between best-case and worst-case!

Timing Anomalies

Timing anomaly due to scheduling effects. When A hits the cache, the

overall execution time is longer than in case of a cache miss.

The Timing Problem

The Timing Problem

End-to-end measurements usually do

not cover the worst case!

The Timing Problem

Static WCET analysis may produce unsatisfactory

results for unpredictable architectures

Two Levels of Timing Analysis

▪ Code level

▪ Single process, task, ISR

▪ Focus on

▪ Control flow

▪ Processor architecture
with pipelines and caches

▪ WCET

▪ System level

▪ Multiple functions or tasks

▪ Focus on

▪ Integration and scheduling

▪ End-to-end timing

▪ Worst-Case Response Time
(WCRT)

aiT

of preemptions

ii

ihpj j

i
jii TD

T

R
CCR =












+= 

)(

Fixed-point problem

Response time

Core execution time = WCET

Interference

Problem Solved?

Reinhard Wilhelm et al.:
The Worst-case Execution Time Problem

— Overview of Methods and Survey of Tools

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, April 2008.

CONCLUSIONS

„The problem of determining upper bounds on execution

times for single tasks and for quite complex processor

architectures has been solved. Several commercial WCET

tools are available and have experienced very positive

feedback from extensive industrial use.“

Problem Solved? No!

▪ The statement only addressed singlecore architectures.

▪ Many publications concerning multicore timing
analysis, and several research projects investigated
multicore timing analysis:
▪ ARAMiS

▪ ARAMiS II

▪ ARGO

▪ ASSUME

▪ CERTAINTY

▪ CONIRAS

▪ PREDATOR

▪ T-CREST

▪ …

Resource Conflicts
PART I – Timing Analysis

Singlecore

Singlecore

Singlecore

Multicore

Multicore

Multicore with Resource Conflicts

Multicore with Resource Conflicts

Problem: Resource Conflicts

• Any sound multicore WCET analysis must take interference delays
into account!

Outline

Freescale QorIQ P4080

Freescale P4080 Access Latencies

▪ Derived through measurements

Jan Nowotsch et al. Multi-core interference-sensitive
WCET analysis leveraging runtime resource capacity
enforcement. ECRTS 2014

▪ Write latency increased by 2550 % if all cores try to
write concurrently to main memory

Assuming Full Interference

▪ e500mc core in very deterministic configuration

▪ Small benchmark program

▪ Measured (single core, no interference)

▪ 610 ms

▪ Measured (all cores active)

▪ 750 ms

▪ Safe WCET bound from aiT (single core)

▪ 628 ms

▪ Safe WCET bound from aiT (assuming full interference)

▪ 4571 ms

▪ Huge overestimation, safe WCET bound exceeds
deadline

Architectural Differences

▪ Typical Embedded Multi-processing Platform

Architectural Differences

▪ Typical COTS Multi-core System

Architectural Differences

▪ 3 – 4 orders of magnitude more resource conflicts
due to shared memory

Analysis Techniques
PART I – Timing Analysis

Analysis techniques

▪ Joint analysis (integrated code-level/system-level
analysis) vs.
separate WCET analysis for each core

▪ Static methods vs. measurement-based/hybrid
methods

▪ (Probabilistic methods)

Joint Analysis

▪ Simultaneous analysis of
concurrently running tasks

▪ But: pipeline state graph of
one basic block may contain
already several thousand
states when computing the
singlecore WCET

▪ Computationally not feasible
due to huge state space

Separate Analysis

▪ Use singlecore WCET analysis, add interference costs in
extra step

▪ Computationally easier

▪ But: we need to take care for non-timing-
compositional architectures

▪ Idea for memory accesses:

▪ Since memory accesses are orders of magnitude slower than
normal instructions, one can argue that the pipeline will
drain during the processing of memory accesses.

▪ Thus, the interference delays imposed by resource conflicts
do not cause timing anomalies and can be added later to the
singlecore WCET bound.

aiT (Singlecore)

aiT (Multicore)

TimeWeaver (Multicore)

Hybrid WCET Analysis

▪ Combines static analysis and hardware measurements

▪ Computes WCET estimate based on
▪ Execution times from traces and

▪ Static value & worst-case path analysis

▪ Observed interferences are automatically taken into account
 by ist very nature a joint analysis

Probe Effect

▪ Caveat: probe effect!
Measurements distorted by effects of code instrumentation

Use non-intrusive hardware support of modern processors

Excerpt from:

ISO 26262-6 Road vehicles - Functional safety – Part 6: Product development: Software Level, 2011.

Real-Time Trace Formats
▪ Provided many modern high-end processors

✓ Nexus IEEE-ISTO 5001 program trace events (at least class 2)* in
trace data, e.g. generated by

▪ PowerPC NXP Qorivva, QorIQ P- and T-series, e.g.
MPC55xx/MPC56xx/MPC57xx, P204x/P30xx/P40xx/P50xx

✓ CoreSight - Embedded Trace Macrocell (ETM) instruction trace data,
e.g. generated by

▪ ARMv7/v8 AARch32, e.g., Cortex-A53, Cortex-R5F

✓ Multi-Core Debug Solution (MCDS) Program Traces (at least Flow
Traces) e.g. generated by

▪ Infineon TriCore AURIX platform

▪ Infineon C16x/XC2000 platform

(*) class 1 correspond to JTAG debugger -- class 4 to real-time instruction traces

Nexus Traces

▪ Trace segments, separated by trace events

▪ Contents of trace message for a trace event:
▪ Time stamp + Address + Content of Branch-History-Buffer (BHB)

▪ One trace event
▪ for each indirect branch

▪ when the BHB is full

 Not for every branch exists a timestamp

+056 TCODE =1D PT - IBHSM F- ADDR = F1F4 HIST =2 TS =8847

+064 TCODE =21 PT - PTCM EVCODE =A TS =88 F1

+072 TCODE =1C PT - IBHM U- ADDR =03 DC HIST =1 TS =8 D62

+080 TCODE =21 PT - PTCM EVCODE =A TS =8 E2F

+088 TCODE =21 PT - PTCM EVCODE =A TS =8 FBA

+096 TCODE =21 PT - PTCM EVCODE =A TS =9105

Trace Analysis

▪ Trace graph: super-graph over all input traces
▪ Nodes: trace points (addresses of trace events)

▪ Edges: trace segments; edge costs: execution time from traces

▪ Trace segments are context-sensitive
▪ A trace segment represents (context-sensitive) CFG edges

▪ Multiple trace graph edges between two trace points

▪ Connecting trace to input binary
▪ Trace event/trace point → point in the control-flow graph (CFG)

▪ Trace segment → program path between trace points, annotated with costs

The Path Coverage Aspect …

TimeWeaver
Analysis

Extrapolated WCET

1st Execution Trace 2nd Execution Trace

Extrapolated
WCET Path

▪ TimeWeaver extrapolates the timing from concrete execution traces to a worst-case
execution time (WCET) estimate. Example:

Reducing Resource Conflicts
PART I – Timing Analysis

Reducing Resource Conflicts

▪ Privatisation of shared resources

▪ Temporal partioning

▪ Spatial partioning

▪ Budget-based partioning

Privatisation of Shared Resources

• TDMA-based resource scheduling (cf. Schranzhofer et al., „Timing

predictability on multi-processor systems with shared resources“, RePP

workshop 2009)

• Needs changes on existing code

Privatisation of Shared Resources

• Copy data in warm-up phase from shared memory to local memory,

copy data in cool-down phase from local memory to shared memory

• Needs tool or operating system support

• May have severe performance impact

Runtime Resource Capacity Enforcement

▪ Uses three main concepts to reduce the interference delays
▪ Limitation

▪ Monitoring

▪ Suspension

▪ Especially useful for mixed-critically systems

▪ Also provides a safety net against SEUs (single event upsets)

Example

▪ Consider a system of four tasks, mapped to four cores

▪ One of the tasks has high criticality, the others have low criticality

Limitation of Critical Tasks

▪ The resource capacity is the worst-case number of resource
accesses (WCRA)

▪ Can be computed statically, e.g. with a modified version of aiT

Limitation of Non-critical Tasks

▪ Compute the single-core WCET of the critical task

▪ This gives the slack time of the critical task, which equals the amount of
interference delay we can allow

▪ Divide the slack time by the interference delay of one access with maximal
interference

▪ This gives the number of accesses that can be delayed in the critical task,
and equals the capacity of the non-critical tasks

Monitoring & Suspension

▪Runtime monitoring via performance counters is used to
observe the number of actual resource accesses

▪Tasks exceeding their access capacity are suspended by
the operating system

Multi-core WCET

▪OS enforces interference delay which is smaller than the slack
time ⇒ the deadline is never missed

Smart Hardware Configurations
PART I – Timing Analysis

Design Guidelines for Predictable Multicores
1. Fully timing compositional cores: no timing anomalies, no domino

effects

2. Disjoint data and instruction caches

▪ Unified caches cause uncertainties on data accesses to interfere with the
instruction cache analysis

3. LRU replacement policies for caches

▪ pLRU and FIFO replacement policies are not well predictable

4. Private caches

▪ Shared caches induce uncertainty on their contents

5. Private memories, lonely sharing

▪ Access latency to shared resources depends on utilization

6. Shared bus protocol with bounded access delay

PREDATOR was an ICT project in the 7th Framework Program of the EU

Freescale QorIQ P4080

Freescale QorIQ P4080

1. Fully timing compositional cores

2. Disjoint data and instruction caches

3. LRU replacement policies for caches

4. Private caches

5. Private memories, lonely sharing

6. Shared bus protocol with bounded access delay

()
()
()

()

Infineon AURIX TC27x

Infineon AURIX TC27x

1. Fully timing compositional cores

2. Disjoint data and instruction caches

3. LRU replacement policies for caches

4. Private caches

5. Private memories, lonely sharing

6. Shared bus protocol with bounded access delay ()

Infineon AURIX TC27x - Configuration

▪ Use one dedicated program flash memory for each of the
performance cores to avoid conflicting accesses. Use the data
flash for the efficiency core, if needed.

▪ Use the core-local data scratchpad whenever possible instead of
the shared RAM to reduce conflicting accesses. If possible,
preload data from the shared RAM and data flash to the local
scratchpad memories to control when accesses to the shared
memory happen.

▪ Place the stack in the core-local data scratchpad.

▪ I/O channels (CAN, FlexRay, . . .) should not be accessed by
multiple cores. Assign each I/O channel in use to a specific core.

▪ Avoid accesses to core-local scratchpad memories from other
cores.

PART II – Memory

Using Generic Software Components for
Safety-critical Embedded Systems

This work was funded by the German Federal Ministry for Education

and Research (BMBF) within the project ARAMiS II with the funding ID

01IS16025. The responsibility for the content remains with the authors.

Using Generic Software Components for
Safety-critical Embedded Systems

Goal

▪ Automate deployment and memory mapping

▪ Optimize mapping

▪ Enable the (re-)use of generic software components

▪ At the same time: ensure functional safety properties

Workflow

Input

Construction Kit

▪ Hardware family is predetermined, for example
Infineon AURIX

▪ … but different members of the family differ in cost
and capabilities (e.g. memory size, number of cores)

▪ Control algorithms are available as a generic model-
based component library

▪ … but need to be adapted to concrete hardware
platform and software architecture

Project-specific Requirements

▪ Some tasks must be performed in a given timeframe,
and with a given frequency ( real-time requirements)

▪ Some tasks are not allowed to access data of other
tasks ( spatial isolation)

▪ Some components shall not run on the same core /
processor ( dislocality), for fail-safe monitoring or
fail-operational systems

▪ …

ASSIST – Input

ASSIST – Input

ASSIST – Input

ASSIST – Input

ASSIST – Output

ASSIST – Output

OS Configuration (*.arxml)

Astrée – Input

OS Configuration (*.arxml)

Astrée – Input

Astrée – Output

Alarms for each possible runtime error

Astrée – Memory Safety

Astrée – Output

Detailed data-flow report

cAMP – Input

OS Configuration (*.arxml)

cAMP – Input

cAMP – Rules

▪ The rule set used for the classification is heavily
influenced by the capabilities of the target hardware
and reflects which memories should be preferred
during data binding.

▪ The classification takes into account:

▪ access behavior (type, origin, frequency),

▪ task system (tasks, periodicity, allocation),

▪ available memory and

▪ additional requirements (binding constraints, special data
classes).

Infineon AURIX TC27x

cAMP – Rules

▪ Processor-n, Task-local, Memory-local Data that is accessed by only one
task, allocated on core n and placed in tightly-coupled memory

▪ Processor-n, Task-global, Memory-local Data that is accessed by more than
one task, allocated on core n and placed in tightly-coupled memory

▪ Processor-global, Task-global, Memory-global Data that is accessed more
than one task, allocated on one or more processing units and placed in global
memory

▪ Constant, Memory-global Data that is only read by software and is placed in
global memory.

▪ Some classes need special handling:

▪ Calibration Data that is used for online calibration purposes.

▪ Measurement Data that is used for online measurement purposes.

cAMP – Output

▪ Assignment of each variable to a memory section

▪ Adaption of code generation via TargetLink‘s variable
classes, __attribute__, and #pragma

▪ Linker command file

▪ MPU config / AUTOSAR OS isolation regions

Result

▪ A project-specific application …

▪ … which satisfies important non-functional
requirements (memory safety, spatial isolation, etc)

▪ … which is build from generic components

▪ ... and tailored to project-specific needs (e.g.,
hardware selection)

▪ … optimized for run-time and memory efficiency

Result

▪ Automation saves a lot of time

▪ Manual deployment and memory mapping of took
about a week

▪ Automatic workflow does this in less than a hour

CONCLUSION

Conclusion

▪ Ensuring non-functional safety properties is possible for
multicores – but needs some work!

▪ Reduce resource conflicts with smart software architecture –
use sharing only where really needed.

▪ Reduce resource conflicts by using smart configurations of COTS
multicores.

▪ Predictable multicores: less complexity and more precise
results.

Conclusion

▪ The advanced tools of AbsInt help to …

▪ … verify the timing behaviour

▪ … ensure memory safety

▪ … prove the absence of runtime errors

▪ … optimize your code base

108

email: info@absint.com

https://www.absint.com

