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Absint Angewandte Informatik GmbH

Provides advanced development tools for embedded systems, and tools
for validation, verification, and certification of safety-critical software.

Founded in February 1998 by six researchers of Saarland University,
Germany, from the group of programming languages and compiler
construction of Prof. Dr. Dr. h.c. mult. R. Wilhelm.

Privately held by the founders.
45 + employees.
Selected customers:
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Key Products

Astrée

= Detects all runtime errors, data races, deadlocks, and other
critical errors

RuleChecker
= Checks coding guidelines (MISRA, CERT, ...)

CompCert

=  Formally verified optimizing C compiler

StackAnalyzer

= Safe upper bounds on maximal stack: no more stack overflows

Timing Analysis Solutions

=  aiT WCET Analyzer: Safe upper bounds on worst-case execution time:
timing guarantees

= TimeWeaver: Hybrid worst-case timing analysis for High-End CPUs:
combines tracing with static analysis

=  TimingProfiler: Timing estimates: continuous timing feedback

and optimization during early SW-development e
€l Absint




Development Process
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Excerpt from:
ISO 26262-6 Road vehicles - Functional safety —
Part 6: Product development: Software Level, 2011.
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Functional Safety

= Demonstration of functional correctness Reﬂuﬁmﬁ w

Well-defined criteria

E-50128,

» Automated and/or model-based testing ESI 25252 E
» Formal techniques: model checking, theorem proving IEG-61508
= Satisfaction of safety-relevant non-functional requirements
= No runtime errors (e.g. division by zero, overflow,
No runtim le-g v Rew ired w
invalid pointer access, out-of-bounds array access)

’—’iﬁé
50128,

Resource usage: S 26252

= Timing requirements (e.g. WCET, WCRT) IEC-61508

= Memory requirements (e.g. no stack overflow)

Robustness / freedom of interference (e.g. no corruption of content, incorrect
synchronization, illegal read/write accesses)

Insufficient: Tests & Measurements
= No specific test cases, unclear test end criteria, no full coverage possible

= "Testing, in general, cannot show the absence of errors." [DO-178B]

Formal technique: abstract interpretation.
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Trends in Automotive

= Code size explosion

u LOC per Car 2010: up to 10 million RETHINKING CAR SOFTWARE AND

" LOC per car 2016: up to 150 million (factor 15)

= Software becomes key value proposition

= Carsin transition from hardware driven
machines to
software-driven electronic devices

= Snowballing complexity is causing significant
software-related quality issues.

= Quality and security of vehicle software and electronics are
key requirements to guarantee safety.

Excerpts from:
Ondrej Burkacky, Johannes Deichmann, Georg Doll, Christian Knochenhauer. Rethinking car software
and electronics architecture. Report McKinsey & Company, Feb. 2018.
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PART | — Timing Analysis
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__—Safety-Critical Hard Real-Time Software

= Controllers in planes, cars, plants, ... are expected to

finish their tasks within reliable time bounds.
= Timing analysis must be performed.
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Automotive: 1ISO-26262

Table 1 — Topics to be covered by modelling and coding guidelines

_ ASIL
Topics | L
A B c D Criticality levels:
1a |Enforcement of low complexity +r ++ ++ ++ A(lowest)
to
1b  |Use of language subsets® ++ ++ ++ ++ ,
guag D (highest)

b The objectives of method 1b are

programmers, code generators or compilers.

or identical naming of local and global variables.
— Exclusion of language constructs which might result in unhandled run-time errors.

— Exclusion of ambiguously defined language constructs which might be interpreted differently by different modellers,

— Exclusion of language constructs which from experience easily lead to mistakes, for example assignments in conditions

7.4.17 An upper estimation of required resources for the embedded software shall be made, including:
a) the execution time;

b) the storage space; and

Excerpt from:

ISO 26262-6 Road vehicles - Functional safety — Part 6: Product development: software level, 2011
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/mriablility (Singlecoh

= LOAD r2, a
- LOAD rl, b %
% ADD r3,r2,rl %
1990: 68020 2001: MPC755

Execution Time (Clock Cycles) Execution Time (Clock Cycles)

| Best Case | ’ Best Case ‘
Up to a factor of 100 between best-case and worst-case! —
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Timing Anomalies

Resource1 (A A ATA RS-
Resource 2 ( C (‘ B )

—

o 90 e )

wsorcez (¥ (o /{

Timing anomaly due to scheduling effects. When A hits the cache, the
overall execution time is longer than in case of a cache miss.
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The Timing Problem

Upper Bound
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Measurement
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WCET
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BCET

The Timing Problem

Upper Bound
L ]

Measurement
[ ]

WCET

|

End-to-end measurements usually do

not cover the worst case!

execution
time
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The Timing Problem

probability
A

Upper Bound
L ]

Measurement
[ ]

BCET WCET

|

execution
time

Static WCET analysis may produce unsatisfactory
results for unpredictable architectures
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Two Levels of Timing Analysis

Code level

= Single process, task, ISR

Focus on
= Control flow

= Processor architecture
with pipelines and caches

= WCET

System level

Multiple functions or tasks

Focus on
= |ntegration and scheduling
" End-to-end timing

= Worst-Case Response Time
(WCRT)

Fixed-point problem

v v
R=C+ > cj[qs D =T,

/, jehp(i) j
Response time /[\ l

# of preemptions
Core execution time = WCET

T
Interference
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Problem Solved?

Reinhard Wilhelm et al.:
The Worst-case Execution Time Problem

— Overview of Methods and Survey of Tools

CONCLUSIONS

,, L he problem of determining upper bounds on execution
times for single tasks and for quite complex processor
architectures has been solved. Several commercial WCET
tools are available and have experienced very positive
feedback from extensive industrial use.*

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, April 2008.
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Problem Solved? No!

"= The statement only addressed singlecore architectures.

= Many publications concerning multicore timing
analysis, and several research projects investigated
multicore timing analysis:

ARAMIS
ARAMIS I
ARGO
ASSUME
CERTAINTY
CONIRAS
PREDATOR
T-CREST
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PART | — Timing Analysis

Resource Conflicts
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Multicore

Shared Memory
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Multicore with Resource Conflicts

| Task 1 \

R

Shared Memory
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Multicore with Resource Conflicts
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@
Problem: Resource Conflicts

« Any sound multicore WCET analysis must take interference delays
into account!

‘ Task 1 -

oL

Shared Memory
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Memory Controller
64 bit DDR2/DDR3

Memory Controller
64 bit DDR2/DDR3
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O
Freescale P4080 Access Latencies

= Derived through measurements

Jan Nowotsch et al. Multi-core interference-sensitive
WCET analysis leveraging runtime resource capacity
enforcement. ECRTS 2014

TABLE L. P4080 MEMORY ACCESS LATENCIES FOR INCREASING
NUMBER OF CONCURRENT CORES. LATENCIES USED FOR EVALUATION
ARE MARKED BOLD.

latency [cycles]

cores 1 2 3 4 5 6 7 8
read 41 75 171 269 296 439 460 604
write ‘ 39 164 245 463 517 737 784 1007

= Write latency increased by 2550 % if all cores try to
write concurrently to main memory
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Assuming Full Interference

e500mc core in very deterministic configuration
Small benchmark program

Measured (single core, no interference)
= 610 ms

Measured (all cores active)
= 750 ms

Safe WCET bound from aiT (single core)
= 628 ms

Safe WCET bound from aiT (assuming full interference)
= 4571 ms

Huge overestimation, safe WCET bound exceeds
deadline
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Architectural Differences

= Typical Embedded Multi-processing Platform

MMMMMMMMMMMMMMMMMMMMMMM
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Architectural Differences

= Typical COTS Multi-core System

CCCCC

eeeeeeeeeee
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Architectural Differences

= 3 — 4 orders of magnitude more resource conflicts
due to shared memory

CCCCC

eeeeeeeeeee

€l Absint



PART | — Timing Analysis

Analysis Techniques
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Analysis techniques

= Joint analysis (integrated code-level/system-level
analysis) vs.

separate WCET analysis for each core

= Static methods vs. measurement-based/hybrid
methods

= (Probabilistic methods)
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Joint Analysis

= Simultaneous analysis of = === =

concurrently running tasks

= But: pipeline state graph of -
one basic block may contain |
already several thousand
states when computing the
singlecore WCET

= Computationally not feasible
due to huge state space
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Separate Analysis

Use singlecore WCET analysis, add interference costs in
extra step

Computationally easier

But: we need to take care for non-timing-
compositional architectures

ldea for memory accesses:

= Since memory accesses are orders of magnitude slower than
normal instructions, one can argue that the pipeline will
drain during the processing of memory accesses.

* Thus, the interference delays imposed by resource conflicts
do not cause timing anomalies and can be added later to the
singlecore WCET bound.
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aiT (Singlecore)




aiT (Multicore)

Interference
Analysis

.\
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TimeWeaver (Multicore)

(Absint)

e
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Hybrid WCET Analysis

Combines static analysis and hardware measurements

Computes WCET estimate based on
= Execution times from traces and
= Static value & worst-case path analysis

Observed interferences are automatically taken into account
=> by ist very nature a joint analysis
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Probe Effect

= Caveat: probe effect!
Measurements distorted by effects of code instrumentation

NOTE 3  If instrumented code is used to determine the degree of coverage, it can be necessary to show that the
instrumentation has no effect on the test results. This can be done by repeating the tests with non-instrumented code.

9.4.6 The test environment for software unit testing shall correspond as closely as possible to the target
environment. If the software unit testing is not carried out in the target environment, the differences in the

source and object code, and the differences between the test environment and the target environment, shall
be analysed in order to specify additional tests in the target environment during the subsequent test phases.

Excerpt from:
ISO 26262-6 Road vehicles - Functional safety — Part 6: Product development: Software Level, 2011.

—> Use non-intrusive hardware support of modern processors

€l Absint



Real-Time Trace Formats

" Provided many modern high-end processors
v Nexus IEEE-ISTO 5001 program trace events (at least class 2)” in
trace data, e.g. generated by

= PowerPC NXP Qorivva, QorlQ P- and T-series, e.g.
MPC55xx/MPC56xx/MPC57xx, P204x/P30xx/P40xx/P50xx

v' CoreSight - Embedded Trace Macrocell (ETM) instruction trace data,
e.g. generated by
= ARMv7/v8 AARch32, e.g., Cortex-A53, Cortex-R5F
v Multi-Core Debug Solution (MCDS) Program Traces (at least Flow
Traces) e.g. generated by
= |nfineon TriCore AURIX platform
= |Infineon C16x/XC2000 platform

(*) class 1 correspond to JTAG debugger -- class 4 to real-time instruction traces
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Nexus Traces

= Trace segments, separated by trace events

= Contents of trace message for a trace event:
= Time stamp + Address + Content of Branch-History-Buffer (BHB)

+056 TCODE =1D PT - IBHSM F- ADDR = F1F4 HIST =2 TS =8847
+064 TCODE =21 PT - PTCM EVCODE =A TS =88 F1l

+072 TCODE =1C PT - IBHM U- ADDR =03 DC HIST =1 TS =8 D62
+080 TCODE =21 PT - PTCM EVCODE =A TS =8 E2F

+088 TCODE =21 PT - PTCM EVCODE =A TS =8 FBA

+096 TCODE =21 PT - PTCM EVCODE =A TS =9105

= (One trace event

= for each indirect branch
= when the BHB is full

— Not for every branch exists a timestamp
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Trace Analysis

" Trace graph: super-graph over all input traces

= Nodes: trace points (addresses of trace events)
= Edges: trace segments; edge costs: execution time from traces

= Trace segments are context-sensitive

= A trace segment represents (context-sensitive) CFG edges
= Multiple trace graph edges between two trace points

= Connecting trace to input binary

= Trace event/trace point — point in the control-flow graph (CFG)
= Trace segment — program path between trace points, annotated with costs
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The Path Coverage Aspect ...

int main() {
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[ main

Start main

!

volatile int varl;
volatile int var2;

int main() {

if (varl <= 10) {

!

Call sum

}
if (var2 <= 200) {
fac(var2);

Call fac

'H

}

return 1;

I3

End main

[ main

Start main

!

volatile int varl;
volatile int var2;

int main() {

if (varl <= 18) {
sum(varl)

Call} sum

if fvar2 <= 20) {

fac(var2);

t

Call fac

l

}

return 1;

I3

End main

1st Execution Trace

2nd Execution Trace

Extrapolated WCET

TimeWeaver extrapolates the timing from concrete execution traces to a worst-case
execution time (WCET) estimate. Example:

TimeWeaver
Analysis

main: 106 cycles
cumulative: 1103 cycles

Start main

volatile int varl;
volatile int var2;

int main() {

if (varl <= 10) {

sum({varl);

[ 5=1 t=40 |

Call sum

¥

fac(var2);

[ 5=1 t=12 |

Call fac

return 1;

}

Extrapolated
WCET Path
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PART | — Timing Analysis

Reducing Resource Conflicts
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Reducing Resource Conflicts

" Privatisation of shared resources
= Temporal partioning
= Spatial partioning
" Budget-based partioning
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Privatisation of Shared Resources

* TDMA-based resource scheduling (cf. Schranzhofer et al., , Timing
predictability on multi-processor systems with shared resources”, RePP

workshop 2009)

Shared Memory

* Needs changes on existing code

Qi AbsInt



| P
Privatisation of Shared Resources

» Copy data in warm-up phase from shared memory to local memory,
copy data in cool-down phase from local memory to shared memory

Task

RRRRER

Local Memory

Shared Memory

* Needs tool or operating system support
* May have severe performance impact
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Runtime Resource Capacity Enforcement

= Uses three main concepts to reduce the interference delays
= Limitation
= Monitoring
= Suspension

= Especially useful for mixed-critically systems
= Also provides a safety net against SEUs (single event upsets)
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Example

= Consider a system of four tasks, mapped to four cores
= One of the tasks has high criticality, the others have low criticality

to deadline

- 4§l AbsiInt
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e

~ Limitation of Critical Tasks

= The resource capacity is the worst-case number of resource
accesses (WCRA)

= Can be computed statically, e.g. with a modified version of aiT

to deadline

Non-critical Task 1

Non-critical Task 2

Non-critical Task 3
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P
Limitation of Non-critical Tasks

= Compute the single-core WCET of the critical task

= This gives the slack time of the critical task, which equals the amount of
interference delay we can allow

= Divide the slack time by the interference delay of one access with maximal
interference

= This gives the number of accesses that can be delayed in the critical task,
and equals the capacity of the non-critical tasks

tO deadline

Single-core WCET \ Slack Time '

Non-critical Task 1

Non-critical Task 2

Non-critical Task 3

€l Absint



Monitoring & Suspension

= Runtime monitoring via performance counters is used to
observe the number of actual resource accesses

= Tasks exceeding their access capacity are suspended by
the operating system

tg Task 3 Suspended

Critical Task

Non-critical Task 1

Non-critical Task 2

Non-critical Task 3
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Multi-core WCET .

= OS enforces interference delay which is smaller than the slack
time = the deadline is never missed

e
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PART | — Timing Analysis

Smart Hardware Configurations
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Design Guidelines for Predictable Multicores

1.  Fully timing compositional cores: no timing anomalies, no domino
effects

2. Disjoint data and instruction caches

m Unified caches cause uncertainties on data accesses to interfere with the
instruction cache analysis

3. LRU replacement policies for caches

- PLRU and FIFO replacement policies are not well predictable
4. Private caches

- Shared caches induce uncertainty on their contents
5. Private memories, lonely sharing

- Access latency to shared resources depends on utilization

6. Shared bus protocol with bounded access delay

PREDATOR (0

PREDATOR was an ICT project in the 7th Framework Program of the EU
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Memory Controller
64 bit DDR2/DDR3

Memory Controller
64 bit DDR2/DDR3

Absint




A A S

Freescale QoriQ P4080

Fully timing compositional cores
Disjoint data and instruction caches
LRU replacement policies for caches
Private caches

Private memories, lonely sharing

AN NN AN

Shared bus protocol with bounded access delay

N N N o’
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e I nﬁn eon A U R I X TC 2 7X

LMU PMU

Data Flash Program Program
RAM Key Flash Flash Flash
32KB Boot ROM 2MB 2MB




A A S

Infineon AURIX TC27x

Fully timing compositional cores

Disjoint data and instruction caches

LRU replacement policies for caches

Private caches

Private memories, lonely sharing

Shared bus protocol with bounded access delay (

)
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Infineon AURIX TC27x - Configuration

Use one dedicated program flash memory for each of the
performance cores to avoid conflicting accesses. Use the data
flash for the efficiency core, if needed.

Use the core-local data scratchpad whenever possible instead of
the shared RAM to reduce conflicting accesses. If possible,
preload data from the shared RAM and data flash to the local
scratchpad memories to control when accesses to the shared
memory happen.

Place the stack in the core-local data scratchpad.

|/O channels (CAN, FlexRay, . . . ) should not be accessed by
multiple cores. Assign each 1/O channel in use to a specific core.

Avoid accesses to core-local scratchpad memories from other
cores.
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PART Il = Memory
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©
Using Generic Software Components for
Safety-critical Embedded Systems

aramisn’

DEVELOPMENT PROCESSES | TOOLS | PLATFORMS
FOR SAFETY-CRITICIAL MULTICORE SYSTEMS

This work was funded by the German Federal Ministry for Education
and Research (BMBF) within the project ARAMIS Il with the funding ID
011S16025. The responsibility for the content remains with the authors.

GEFORDERT VOM

% Bundesministerium
\ fiir Bildung

und Forschung
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/US/In/g Generic Software Components for
Safety-critical Embedded Systems

SCHAEFFLER

i code g%
= methodpark
€l Absint

€l Absint



Goal

Automate deployment and memory mapping
Optimize mapping

Enable the (re-)use of generic software components
At the same time: ensure functional safety properties
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Project-agnostic
construction kit

Hardware Platform

Basic Software Libraries

Model| Based Application
Platform

Project-specific
requirements

Functional Architecture

System Specification

Temporal and Spatial

ASSIST:
Designing the System

Workflow

Astrée:
Analyzing the System

Deployment

Type- and Memory Safety

cAMP:
Integrating the System

Scheduling

Concurrency Defects

Data Partitioning

Data Flow and Access
Behavior

Memory Protection

Memory Mapping

Isolation

Project-specific
Application
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Project-agnostic
construction kit

Hardware Platform

Basic Software Libraries

Model| Based Application
Platform

Project-specific
requirements

Functional Architecture

System Specification

Temporal and Spatial

ASSIST:
Designing the System

Input

Astrée:
Analyzing the System

Deployment

Type- and Memory Safety

cAMP:
Integrating the System

Scheduling

Concurrency Defects

Data Partitioning

Data Flow and Access
Behavior

Memory Protection

Memory Mapping

Isolation

Project-specific
Application
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Construction Kit

Hardware family is predetermined, for example
Infineon AURIX

... but different members of the family differ in cost
and capabilities (e.g. memory size, number of cores)

Control algorithms are available as a generic model-
based component library

... but need to be adapted to concrete hardware
platform and software architecture
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Project-specific Requirements

Some tasks must be performed in a given timeframe,
and with a given frequency (= real-time requirements)

Some tasks are not allowed to access data of other
tasks (= spatial isolation)

Some components shall not run on the same core /
processor (= dislocality), for fail-safe monitoring or
fail-operational systems
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Project-agnostic
construction kit

Hardware Platform

Basic Software Libraries

Model| Based Application
Platform

Project-specific
requirements

Functional Architecture

System Specification

Temporal and Spatial

ASSIST:
Designing the System

Astrée:
Analyzing the System

Deployment

Type- and Memory Safety

cAMP:
Integrating the System

Scheduling

Concurrency Defects

Data Partitioning

Data Flow and Access
Behavior

Memory Protection

Memory Mapping

Isolation

Project-specific
Application
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— ASSIST — Input .

Hardware {

SE . %/

Processor Processorl {
Manufacturer = "Infineon";
Type = "TC277";

Provides 32768 of exclusive feature "LMU RAM";
Provides 4194304 of exclusive feature "PMU Program Flash";
Core Core0 {
Capacity = 100;
Architecture = "TriCore 1.6 P";
Provides shared feature "Performance";
Provides shared feature "FPU";
Provides 16384 of exclusive feature "I-Cache";
Provides 8192 of exclusive feature "D-Cache";
}
Core Corel {
/* ldentical to Core(0 =/
}
Core Core2 {
Capacity = 60;
Architecture = "TriCore 1.6 E";
Provides shared feature "Efficiency";
Provides shared feature "FPU";
Provides shared feature "Lockstep";
Provides 8192 of exclusive feature "I-Cache";
Provides 128 of exclusive feature "DMI Readbuffer";

Figure 3: Hardware Specification in ASSIST
€l Absint



ASSIST — Input .

Application OS_Application_0 {
Task Tl _Controllers { CoreUtilization = 2; }
}
Application OS_Application_1 {
Task T3_AttitudeObserver { CoreUtilization = 20; }
}
Application OS_Application_2 {
Task T2_EngineController {
CoreUtilization = 2;
Requires shared Core feature "Lockstep";

}
Application OS_Application_3 {
Task T4_HeightObserver { CoreUtilization = 20; }

}
Application OS_Application_4 {
Task T6 _DSP { CoreUtilization = 3; }

}
Application OS_Application_5 {
Task T5 AltitudeObserver { CoreUtilization = 20; }

Figure 4: Applications and Tasks in ASSIST
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ASSIST — Input .

T4_HeightObserver (20)

T6_DSP (3) T3_AttitudeObserver (20) T1_Controllers (2) T2_EngineController (2)
T5_AltitudeObserver (20)

Figure 5: Task Dependency Graph

TaskGraph {

T6_DSP —-> T3 _AttitudeObserver;
T3_AttitudeObserver -> T4_HeightObserver, T5_AltitudeObserver;
T4_HeightObserver —> Tl _Controllers;

T5 AltitudeObserver —> Tl Controllers;

Tl Controllers —> T2_EngineController;

Figure 6: Task Graph Specification in ASSIST
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ASSIST — Input

Restrictions |
T6_DSP, T3_AttitudeObserver dislocal up to Core;
T6_DSP, T4_HeightObserver dislocal up to Core;

}

Figure 7: Mapping Constraint Specification in ASSIST
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~ ASSIST - Output

[4Copter
Compartment
Box
Board
Processor
Corel Corel Core2
T3_AttitudeObserver  T1_Controllers T2_EngineCeontroller  T5_AltitudeObserver  T6_DSP T4_HeightObserver

Figure 10: Deployment solution found by ASSIST
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T1_Controllers
= /MICROSAR/Os/0OsTask

/MICROSAR/0s/0OsTask/OsTaskActivation

/MICROSAR/Os/0sTask/OsTaskPriority

/MICROSAR/0Os/0sTask/0OsTaskSchedule

/MICROSAR/0s/0sTask/OsTaskStackSharing

/MICROSAR/0s/0OsTask/OsTaskStackSize

/MICROSAR/0s/0OsTask/0OsTaskType

OS Configuration (*.arxml)
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T1_Controllers
= /MICROSAR/Os/0OsTask

/MICROSAR/0s/0OsTask/OsTaskActivation

/MICROSAR/Os/0sTask/OsTaskPriority

/MICROSAR/0Os/0sTask/0OsTaskSchedule

/MICROSAR/0s/0sTask/OsTaskStackSharing

/MICROSAR/0s/0OsTask/OsTaskStackSize

/MICROSAR/0s/0OsTask/0OsTaskType

OS Configuration (*.arxml)
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2019-10-01 : vim — Konsole

94 tor_to_thro_conv__Sum4 = Sb3_throttle_per_torqueZ + (Sb3_Lookup_Table + 39
Sb3_throttle_per_torqueY); 100
if (tor_to_thro_conv__Sum4 > tor_to_thro_conv__EngineCap2_uplimit) { 13
Out_throttleFront_engCtr = tor_to_thro_conv__EngineCap2_uplimit; 5
} 106
402 else { 187
)8 Float32 In_engCtr_takeoff_g_sw;
4 CONST Float32 tor_to_thro_conv__EngineCap2_lowlimit = - g 09 Float32 In_engCtr_thrustZ_N_attCtr;
405 110 Float32 In_engCtr_torqueX_NM_attCtr;
406 1 Float32 In_engCtr_torqueY_NM_attCtr;
407 if (tor_to_thro_conv__Sumé4 < tor_to_thro_conv__EngineCap2_lowlimit) { Float32 In_engCtr_torqueZ_NM_attCtr;
40 11 Float32 Out_throttleFront_engCtr;
] Out_throttleFront_engCtr = tor_to_thro_conv__EngineCap2_lowlimit; 114 Float32 Out_throttleLeft_engCtr;
410 } 115 Float32 Out_throttleRear_engCtr;
11 else { 1 Float32 Out_throttleRight_engCtr;
12 Float32 Out_thrustZ_N_engCtr;
13 Out_throttleFront_engCtr = tor_to_thro_conv__Sum4; 1 Float32 Out_torqueX_NM_engCtr;
1 Float32 Out_torqueY_NM_engCtr;
1 } 2
4
41 1
41 Sb2_Lookup_Table2 = Tab1DS3I2T3126_b(&Sh2_Lookup_Table2_map, Out_throttleFront_engCtr); 24 Bool Out_takeOff_engCtr;
42¢ 125
9 12
423 tor_to_thro_conv__Sum? = (Sh3_Lookup_Table + Sb3_throttle_per_torqueX) - 12
2 Sb3_throttle_per_torqueZ; 129 Float32 Sb2_Lookup_Tablel_axis[10];
1 Float32 Sb2_Lookup_Table2_axis[101;
3 Float32 Sb2_Lookup_Table3_axis[10];
427 if (tor_to_thro_conv__Sum7 > tor_to_thro_conv__EngineCap1_uplimit) { 132 Float32 Sb2_Lookup_Table_axis[10];
428 33 T Float32 Sb3_Lookup_Table_axis[10];
429 Out_throttleLeft_engCtr = tor_to_thro_conv__EngineCap1_uplimit; 34 Float32 tor_conv__Lookup_Tablel_table[10];
430 } 135 Float32 tor_conv__Lookup_Table2_table[10];
43 else { 136 Float32 tor_conv__Lookup_Table3_table[10];
432 137 Float32 tor_conv__Lookup_Table_table[10];
CONST Float32 tor_to_thro_conv__EngineCap1_lowlimit = - g 138 Float32 tor_to_thro_conv__Lookup_Table_table[10];
4 40
436 if (tor_to_thro_conv__Sum7 < tor_to_thro_conv__EngineCapl_lowlimit) { 141
- 42
Out_throttleLeft_engCtr = tor_to_thro_conv__EngineCapl_lowlimit; 143
} 1
) else { 145
1 4
2 Out_throttleLeft_engCtr = tor_to_thro_conv__Sum7; 147
3} 4
} 4
5 STEP_EngineController( e
446 5
447
448 Sb2_Lookup_Table3 = Tab1DS3I2T3126_b(&Sb2_Lookup_Table3_map, Out_throttleLeft_engCtr);
source/EngineController/EngineController.c [RO] 449,0-1 93% source/EngineController/EngineController.h [RO]

*Applications =@ 2019-10-01 " vim —... [E] A Mi08 Jul, 14:53 Simon Wegener



Astrée — Output

Absint Advanced An

zer for C - Astrée - i4copter (1)

Project Analysis Editors Edit Tools Help
PEEO 242 00® €« % H

aa i4copter # Analyzed file: preprocessed/source/copter_var2_4.c C original source: /local/ssd/swegener/repositories/custome...Jit/AID-3315-Braeunling/2019-10-01/source/copter_var2_4.c : & Q
& Information

Configuration
O Preprocessor

static float random_value(float min, float max) { static float random value({float min, float max) {
% Parser naom_ ndom_:
/ anal statlc 1nt i=-1; statlc 1nt 1i=-1;
nalyzer i = ioe= -
A Annotations return 1 *5.F; return 1 * 5.f; // Dummy Ra
Results
& overview StatusType TASK T1 Controllers (void) { TASK(T1 Controllers) {
«1Call graph static Float32 DiscreteIntegrator wrapper = 0.F; static Float32 DiscreteIntegrator_wrapper =
2] grapl g _Wrapp: g _wrapp!
/. Reports Inputs for Altitude er
w1 IR graph In altCtr Altitude m rem = DiscreteIntegrator wrapper; In altCtr Altitude m rem = DiscreteIntegrater wrapper;
Files DiscreteIntegrator_wrapper += 0.009F * In_altCtr_VelocityZ Ms_rem; DiscreteIntegrator_wrapper += 0.009F * In_altCtr_VelocityZ Ms_rem;
= d e In altCtr VelocityZ Ms rem = Out VelocityZ Ms rem; In altCtr VelocityZ Ms rem = Out VelocityZ Ms rem;
reprocesse nginal In a!tftr AccZ_g _rem = 0.F; In_altCtr_AccZ g _rem = 0.F;
» # AltitudeController.c In altfrr Altitude ' m_altobs_value = Out Altitude m_altObs value; ; In_altCtr Altitude m_altObs_value = Out_Altitude m altObs_value;
b # AltitudeObserver.c In altCtr Altitude m alt0bs noiseVariance = Out Altitude m altObs noiseVariance; ; In altCtr Altitude m altObs noiseVariance = Qut Altitude m altObs noiseVariance;
b # AttitudeController.c In_altCtr Altitude m_altObs_processVariance = OQut Altitude m alt0bs processVariance; In_altCtr Altitude m altObs_processVariance = Qut Altitude m_altObs_processVariance;
b} # AttitudeObserver.c 797 In altCtr Altitude m altObs valid = 3 B 47 u =
» % dib.c In_altctr_VelocityZ Ms_altobs_value = Out_VelocityZ Ms_altObs_value; In_altCtr_VelocityZ Ms_altObs_value = Out_VelocityZ Ms_altObs_value;
» [# co ‘tsr var? 4.c In altCtr VelocityZ Ms altObs noiseVariance = Out VelocityZ Ms aliObs neiseVariance; 5 In altCtr VelocityZ Ms altObs neiseVariance = Qut VelocityZ Ms altObs neiseVariance;
- pler_vars <. In_altCtr VelocityZ Ms_altObs_processVariance = Out_VelocityZ Ms_altObs processVariance; 4 In_altCtr VelocityZ Ms_altObs_processVariance = Out_VelocityZ Ms_altObs_processVariance;
: : Englnegun:ru::en(‘ t In altCtr VelocityZ Ms altObs valid - Out VelocityZ Ms altobs valid; In_altCtr VelocityZ Ms altObs valid - Out VelocityZ Ms altObs valid;
e -nginetontrofer hi.c In_altCtr_AccZ_g_altObs_value = Out_AccZ Mss_altObs_noiseVariance; In_altCtr_AccZ g_altObs_value = Qut_AccZ Mss_altDbs_noiseVariance;
» # HeightObserver.c In_altCtr AccZ_g_altObs_noiseVariance = Out AccZ Mss _altObs_processVariance; In_altCtr_AccZ_g_altObs_noiseVariance = Out_AccZ Mss_altObs_processVariance;
» # osek stub.c In altCtr AccZ g altObs process¥ariance = Out AccZ Mss altObs value: In altCtr_AccZ g altObs processVariance = Out AccZ Mss altObs value;
In_altCtr_AccZ g _altObs_valid =|in_altCtr AccZ_g_altObs_noiseVariance in {0.} In_ alttt AccZ_g_: altﬂh vahd Out_AccZ Mss_altObs_valid;
1 STEP_AltitudeController(); Float32 STEP A1t1tudecan‘t ro'I.'Ler()
(aka float)
Inputs for Attit er
In attCtr thrustZ g rem = 1.F - Out ThrustZ g altCon; In attCtr thrustZ girsm 1.F - Out ThrustZ g altCon;
In_attCtr_angleX RAD rem = Out_angleX RAD_rem; In_attCtr_angleX RAD rem = Out_angleX RAD_rem;
In_attCtr_angleY RAD rem = Qut_angleY RAD rem; In_attCtr_angleY RAD_rem = Out_angleY RAD_rem;
In attCtr angularRateZ RADs rem = Out angularRateZ RADs rem; In attCtr angularRateZ RADs rem = Out angularRateZ RADs rem;
In_attCtr_statesY attObs_angularStatel = Out_angularStatesY attObs angularStatel; In_attCtr_statesY_attObs_angularStatel = Out_angularStatesY_attObs_angularStatel;
In attCtr statesY attObs angularState2 = Out angularStatesY attObs angularState2; In attCtr statesY attObs angularState2 = Out angularStatesY attObs angularState2;
In_attCtr_statesY_att0Obs_angularRate = Out _angularStatesY attObs angularRate; In_attCtr_statesY_attObs_angularRate = Out_angularStatesY attObs_angularRate;
In attCtr statesY attObs angle = Out angularStatesY attObs angle; = In attCtr statesY attObs angle = Out angularStatesY attObs angle; =
Line 797, column 41 Line 47, column 1

[ call#TaskExec at osek stub.c:4024.0-4059.1
cal1#TASK_T1_Controllers at osek stub.c:4050.2-34
ALARM (B) read write data race: read-write data-race in memcpy 1 byte(s) at [ Out Altitude m altObs valid@® I in process 6: Tl Controllers at copter var2 4.c:797.40-67 ]

Alarms for each possible runtime error

~ | | More filters | 235 of 235 findings visible

| Project Summary  Resource Monitor

Errors: 0
Order = Type Category Location Classification = Comment Message =

Code locations with alarms: 5

CAE s 160 B Alarm (B) Readfwrite data race # copter_var2_4.c:796.50-87 ALARM (B) read_write_data_race: read-write data-race in memcpy 4 byte(s) at [ Out_Altitude_m_altObs_processVaria

Flow anomalies: 13 - Alarm (B) Readwrite data race B copter var2_4.c:797.40-67 _- ALARM (B) read_write_data_race: read-

Rule violations: 2 . .

R . B Alarm (B) Readfwrite data race # copter_var2_4.c:798.42-71 ALARM (B) read_write_data_race: read-write data-race in memcpy 4 byte(s) at [ Out_VelocityZ_Ms_altObs_value@0 ]

Memory locations with alarms:

Data races: 54 19 P Alarm (A) Float argument can be MaN or infinity # copter_var2_4.c:798.42-71 ALARM (A) invalid_float_argument: can be NaN or infinity [-3.4028234663852886e+38, 3.4028234663852886e+38]
Reached code: 99% an (ST Pomdbinseibn dbn e U S PP P S T O U R S PP S SN P SO S P NI
Duration: 1min 47s L

A Qutput I' W Findings A Not reached 4 Data flow A Watch 4 Search A Taints 4 Debug




Astrée — Memory Safety

Table 1. Mapping of Requirements of Type- and Mem-
ory Safety [2] to Astrée Alarm Types [1].

Requirement Alarm Type
Operations only applied for Invalid pointer comparison
instances of correct type Subtraction of invalid pointers

Attempt to write to a constant

Dereference of mis-aligned pointer

Overflow of Integers or Float

Invalid shift argument

Use of uninitialized variables

Division or modulo by zero

Undefined integer modulo

Invalid function calls

Unsynchronized access to shared data
Access only existing objects Dereference of null or invalid pointer

Pointer to invalid or null function

Use of dangling pointer

Arithmetics on invalid pointers

Possible overflow upon dereference
Access only inside object Incorrect field dereference
boundaries Out-of-bound array access

Dereference of mis-aligned pointer

Possible overflow upon dereference

€l Absint



Project Analysis Editors Tools Help

aa idcopter
& Information
Configuration
O Preprocessor
A% Parser
# Analyzer
A Annotations
Results
«i1Call graph
/. Reports
«1 IR graph
Files

Preprocessed | Original
#  AltitudeController.c
AltitudeObserver.c
AttitudeController.c
AttitudeObserver.c
clib.c

# copter_var2 4.c
EngineContraller.c
EngineContraller_lut.c
HeightObserver.c
osek_stub.c

TENETETRETET

.

.

b
»
»
»
b
b
b
b
b
b

.

[ Project Summary ~ Resource Monitor
Errors: 0
Code locations with alarms:
Run-time errors: 159
Flow anomalies: 13
Rule violations: 2

Memory locations with alarms:

Data races: 54
Reached code: 99%
Duration: 1min 525

T -

Findings/C Findings/F Findings/Classification

All variables

In_attCtr_statesY attObs_angularRate
In_attCtr_statesY_attObs_angularStatel
In_attCtr_statesY_attObs_angularState2
In_attCtr_takeOff_engCtr
In_attCtr_thrustZ_g_rem
In_attObs_accX_g_dsp_noiseVariance
In_attObs_accX_g_dsp_processVariance
In_attObs_accX_g_dsp_value
In_attObs_accY_g_dsp_noiseVariance
In_attObs_accY_g dsp_processVariance
In_attObs_accY_g_dsp_valid
In_attObs_accY_g_dsp_value
In_attObs_angularRateX_RADs_dsp_value
In_attObs_angularRateY_RADs_dsp_noiseVariance
In_attObs_angularRateY RADs_dsp_processVariance
In_attObs_angularRateY_RADs_dsp_valid
In_attObs_angularRateY RADs dsp value
In_attObs_takeOff_engCtr
In_attObs_torqueX_NM_engCtr
In_attObs_torqueY_NM_engCtr
In_engCtr_takeoff_g_sw
In_engCtr_thrustZ N_attCtr
In_engCtr_torqueX_NM_attCtr
In_engCtr_torqueY_NM_attCtr
In_engCtr_torqueZ_NM_attCtr
In_heiObs_Altitude_m_dsp_value
In_heiObs_AngleX_RAD_attObs
In_heiObs_AngleY_RAD attObs
In_heiObs_TakeOff_engCtr
In_heiObs_ThrustZ_N_engCtr
&S OSError_params
OSError_params3
OutAccZ_Mss_heiObs_valid
Out_AccZ_Mss_altObs_noiseVariance
Qut AccZ_Mss_altObs processVariance
Qut AccZ Mss_altObs_valid

\

Astrée — Output

REEO 2P# 2 00® €% C1N

Rule violations

data race
data race
data race

Absint Advanced An

shared variable

shared variable
shared variable
shared variable

Reachability

1 reads
1reads
1reads
11 reads
1reads
0 reads
0 reads
3 reads
0 reads
0 reads
0 reads
3reads
2 reads
0 reads
0 reads
0 reads
2 reads
0 reads
1reads
1reads
1reads
2 reads
1reads
1reads
1reads
1reads
1reads
1reads
1reads
1reads
0 reads
0 reads
0 reads
1 reads
1reads
1 reads

Metrics | Data flow

zer for C - Astrée

1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
0 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
1 writes
4 writes
1 writes
1 writes
1 writes
1 writes
1 writes

Control flow

copter (1)

Filter

~ | | Processes

“ | Process 10: T5_AltitudeObserver
Process 6: T1_Controllers

‘\.

Detailed data-flow report

Out AccZ Mss altObs value data race shared variable
Out_AccZ_Mss_heiObs_noiseVariance Oreads 1 writes
Out_AccZ_Mss_heiObs_processVariance Oreads 1 writes
Out_AccZ_Mss_heiObs_value 1lreads 1writes

Out_AccZ_g_dsp_noiseVariance data race shared variable 1reads 1 writes

Out_AccZ_g_dsp_processVariance data race shared variable 1reads 1 writes

Out_AccZ_g_dsp_valid data race shared variable 1reads 1 writes

Out_AccZ_g_dsp_value data race shared variable 1lreads 1 writes

Out_Altitude_m_altObs_noiseVariance data race shared variable 1reads 1 writes

Out_Altitude_m_altObs_processVariance data race shared variable 1reads 1 writes

Out_Altitude_m_altObs_valid data race shared variable 1reads 1 writes

Out_Altitude_m_altObs_value data race shared variable 1reads 1 writes

Out_Altitude_m_dsp_noiseVariance data race shared variable 1reads 1 writes

Out_Altitude_m_dsp_processVariance data race shared variable 1reads 2 writes

Out_Altitude_m_dsp_valid data race shared variable 1reads 2 writes

Out_Altitude_m_dsp_value data race shared variable 2reads 2 writes
OQut_Altitude_m_heiObs_noiseVariance Oreads 1writes
Out_Altitude_m_heiObs_processVariance Oreads 1 writes
Out_Altitude_m_heiObs_valid Oreads 1 writes
Out_Altitude_m_heiObs_value Oreads 1 writes
Out_ThrustZ_g_altCon 1reads 3 writes

Out VelocityZ Ms_altObs_noiseVariance data race shared variable 1reads 1 writes

Qut_VelocityZ_Ms_altObs_processVariance data race shared variable 1reads 1 writes

Out_VelocityZ Ms_altObs_valid data race shared variable 1reads 1 writes

Out_VelocityZ_Ms_altObs_value data race shared variable 1reads 1 writes
Qut VelocityZ Ms heiObs noiseVariance Oreads 1 writes

Filter: v
A Output & Findings & Notreached & Dataflow 4 Watch 4 Search 4 Taints 4 Debug

Filter:

%ﬁ- Overview




Project-agnostic
construction kit

Hardware Platform

Basic Software Libraries

Model| Based Application
Platform

Project-specific
requirements

Functional Architecture

System Specification

Temporal and Spatial

ASSIST:
Designing the System

Astrée:
Analyzing the System

Deployment

Type- and Memory Safety

cAMP:
Integrating the System

Scheduling

Concurrency Defects

Data Partitioning

Data Flow and Access
Behavior

Memory Protection

Memory Mapping

Isolation

Project-specific
Application

~ € Absint



T1_Controllers
= /MICROSAR/Os/0OsTask

/MICROSAR/0s/0OsTask/OsTaskActivation

/MICROSAR/Os/0sTask/OsTaskPriority

/MICROSAR/0Os/0sTask/0OsTaskSchedule

/MICROSAR/0s/0sTask/OsTaskStackSharing

/MICROSAR/0s/0OsTask/OsTaskStackSize

/MICROSAR/0s/0OsTask/0OsTaskType

OS Configuration (*.arxml)
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cAMP - Input -

Table 2: Excerpt from Astrée Data Flow Report

Variable Function Access | Process Data Races | Shared | Class
In_altCtr_AccZ_g_altObs_noiseVariance TASK_T1_Controllers write T1_Controllers no no process local
In_altCtr_AccZ_g_altObs_processVariance | TASK_T1_Controllers write T1_Controllers no no process local
Out_accX_g_dsp_noiseVariance TASK_T3_AttitudeObserver | read T3_AttitudeObserver | yes yes global
Out_accX_g_dsp_noiseVariance TASK_T6_DSP write T6_DSP yes yes global
Out_accX_g_dsp_processVariance TASK_T3_AttitudeObserver | read T3_AttitudeObserver | yes yes global
Out_accX_g_dsp_processVariance TASK_T6_DSP write T6_DSP yes yes global
Out_torqueX_ NM_attCtr TASK_T2_EngineContreoller | read T2_EngineController | yes yes core local
Out_torqueX NM_attCtr STEP_AttitudeContreoller write T1_Controllers yes yes core local
Out_torqueX_ NM_engCtr TASK_T3_AttitudeObserver | read T3_AttitudeObserver | yes yes core local

€ Absint



cAMP — Rules

" The rule set used for the classification is heavily
influenced by the capabilities of the target hardware
and reflects which memories should be preferred
during data binding.

= The classification takes into account:

= access behavior (type, origin, frequency),
= task system (tasks, periodicity, allocation),
= available memory and

= additional requirements (binding constraints, special data
classes).

€l Absint
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LMU PMU

Data Flash Program Program
RAM Key Flash Flash Flash
32KB Boot ROM 2MB 2MB




cAMP — Rules

Processor-n, Task-local, Memory-local Data that is accessed by only one
task, allocated on core n and placed in tightly-coupled memory

Processor-n, Task-global, Memory-local Data that is accessed by more than
one task, allocated on core n and placed in tightly-coupled memory

Processor-global, Task-global, Memory-global Data that is accessed more
than one task, allocated on one or more processing units and placed in global
memory

Constant, Memory-global Data that is only read by software and is placed in
global memory.

Some classes need special handling:
= Calibration Data that is used for online calibration purposes.
= Measurement Data that is used for online measurement purposes.

€l Absint



cAMP - Output

Assignment of each variable to a memory section

Adaption of code generation via TargetLink’s variable

classes, attribute ,and #pragma
Linker command file
MPU config / AUTOSAR OS isolation regions

€l Absint
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Result

A project-specific application ...

... which satisfies important non-functional
requirements (memory safety, spatial isolation, etc)

... which is build from generic components

... and tailored to project-specific needs (e.g.,
hardware selection)

... optimized for run-time and memory efficiency

€l Absint



Result

= Automation saves a lot of time

* Manual deployment and memory mapping of took
about a week

= Automatic workflow does this in less than a hour
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CONCLUSION

€l Absint



Conclusion

Ensuring non-functional safety properties is possible for
multicores — but needs some work!

Reduce resource conflicts with smart software architecture —
use sharing only where really needed.

Reduce resource conflicts by using smart configurations of COTS
multicores.

Predictable multicores: less complexity and more precise
results.
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Conclusion

The advanced tools of AbsInt help to ...
... verify the timing behaviour

... ensure memory safety

... prove the absence of runtime errors
... optimize your code base
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